Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 13, 2023

Electrocatalytic hydrogen evolution at carbon paste electrodes doped with a manganese(II) imidazoledicarboxylate complex

  • Zhengwei Wu , Tiantian Wan , Xiaoxia Kong , Qinqin Shen , Kaiyi Li and Huilu Wu EMAIL logo

Abstract

A mononuclear Mn(II) complex [Mn(p-MOPhH2IDC)2(H2O)2]·2(DMF), was synthesized by the reaction of p-MOPhH3IDC (2-(4-methoxyphenyl)-1H-imidazole-4,5-dicarboxylic acid) and Mn(CH3COO)2·4H2O under solvothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV–vis spectroscopy. The structure analysis revealed that the manganese(II) center has a six-coordinated octahedral coordination geometry. The performance of a Mn(II) complex-doped carbon paste electrode (Mn-CPE) in the electrocatalytic hydrogen evolution reaction (HER) was evaluated by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods. The polarization curve shows that the η10298K (overpotential, 10 mA cm−2) of the Mn-CPE was positively shifted by 341 mV compared with the bare CPE (without complex). The Tafel slope of the Mn-CPE was 161 mV dec−1. These data indicate that the Mn-CPE was effective in the HER electrocatalytic reaction. For EIS experiments, the arc diameter of the high-frequency region of the Mn-CPE was much smaller than that of the bare CPE, which further indicates the effective catalytic capacity of the Mn(II) complex for hydrogen evolution. The information obtained from this study will help to expand the application of Mn(II) complexes in the field of electrochemistry.


Corresponding author: Huilu Wu, School of Chemistry and Chemical Engineering, Lanzhou Jiao tong University, Lanzhou, Gansu, 730070, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: Natural Science Foundation of Gansu Province (Grant No. 21JR7RA298).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Pareek, A., Dom, R., Gupta, J., Chandran, J., Adepu, V., Borse, P. H. Mater. Sci. Energy Technol. 2020, 3, 319–327; https://doi.org/10.1016/j.mset.2019.12.002.Search in Google Scholar

2. Subramanian, K. R. Int. J. Recent Innovations Acad. Res. 2018, 2, 8–19.Search in Google Scholar

3. Zografakis, N., Sifaki, E., Pagalou, M., Nikitaki, G., Psarakis, V., Tsagarakis, K. P. Renewable Sustainable Energy Rev. 2010, 14, 1088–1095; https://doi.org/10.1016/j.rser.2009.11.009.Search in Google Scholar

4. Liu, J. Renewable Sustainable Energy Rev. 2019, 99, 212–219; https://doi.org/10.1016/j.rser.2018.10.007.Search in Google Scholar

5. Dutta, S. J. Ind. Eng. Chem. 2014, 20, 1148–1156; https://doi.org/10.1016/j.jiec.2013.07.037.Search in Google Scholar

6. Julien, P., Bergthorson, J. M. Sustainable Energy Fuels 2017, 1, 615–625; https://doi.org/10.1039/c7se00004a.Search in Google Scholar

7. Prabhukhot, P. R., Wagh, M. M., Gangal, A. C. Adv. Energy and Power 2016, 4, 11–22; https://doi.org/10.13189/aep.2016.040202.Search in Google Scholar

8. Brunel, J. M. Int. J. Hydrogen Energy 2017, 42, 23004–23009; https://doi.org/10.1016/j.ijhydene.2017.07.206.Search in Google Scholar

9. Lv, Z., Li, Z., Tan, X., Li, Z., Wang, R., Wen, M., Jiang, L., Wang, G., Xie, G. Appl. Surf. Sci. 2021, 552, 149514; https://doi.org/10.1016/j.apsusc.2021.149514.Search in Google Scholar

10. Dehghanimadvar, M., Shirmohammadi, R., Sadeghzadeh, M., Aslani, A., Ghasempour, R. Int. J. Energy Res. 2020, 44, 8233–8254; https://doi.org/10.1002/er.5508.Search in Google Scholar

11. Ji, M., Wang, J. Int. J. Hydrogen Energy 2021, 46, 38612–38635; https://doi.org/10.1016/j.ijhydene.2021.09.142.Search in Google Scholar

12. Hsieh, C. T., Huang, C. L., Chen, Y. A., Lu, S. Y. Appl. Catal. B 2020, 267, 118376; https://doi.org/10.1016/j.apcatb.2019.118376.Search in Google Scholar

13. Raja, D. S., Huang, C. L., Chen, Y. A., Choi, Y., Lu, S. Y. Appl. Catal. B 2020, 279, 119375.10.1016/j.apcatb.2020.119375Search in Google Scholar

14. Lei, Z., Wang, T., Zhao, B., Cai, W., Liu, Y., Jiao, S., Liu, M., Cao, R. Adv. Energy Mater. 2020, 10, 2000478; https://doi.org/10.1002/aenm.202000478.Search in Google Scholar

15. Pu, Z., Zhao, J., Amiinu, I. S., Li, W., Wang, M., He, D., Mu, S. Energy Environ. Sci. 2019, 12, 952–957; https://doi.org/10.1039/c9ee00197b.Search in Google Scholar

16. Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Guo, S. Adv. Energy Mater. 2020, 10, 1903120; https://doi.org/10.1002/aenm.201903120.Search in Google Scholar

17. Li, X. P., Huang, C., Han, W. K., Ouyang, T., Liu, Z. Q. Chin. Chem. Lett. 2021, 32, 2597–2616; https://doi.org/10.1016/j.cclet.2021.01.047.Search in Google Scholar

18. Lu, X. F., Xia, B. Y., Zang, S. Q., Lou, X. W. Angew. Chem. Int. Ed. 2020, 59, 4634–4650; https://doi.org/10.1002/anie.201910309.Search in Google Scholar PubMed

19. Paul, R., Dai, Q., Hu, C., Dai, L. Carbon Energy 2019, 1, 19–31; https://doi.org/10.1002/cey2.5.Search in Google Scholar

20. Vincent, I., Bessarabov, D. Renewable Sustainable Energy Rev. 2018, 81, 1690–1704; https://doi.org/10.1016/j.rser.2017.05.258.Search in Google Scholar

21. Wang, Y. X., Rinawati, M., Huang, W. H., Cheng, Y. S., Lin, P. H., Chen, K. J., Yeh, M. H., Ho, K. C., Su, W. N. Carbon 2022, 186, 406–415; https://doi.org/10.1016/j.carbon.2021.10.027.Search in Google Scholar

22. Tian, T., Huang, L., Ai, L., Jiang, J. J. Mater. Chem. A 2017, 5, 20985–20992; https://doi.org/10.1039/c7ta06671f.Search in Google Scholar

23. Aiyappa, H. B., Masa, J., Andronescu, C., Muhler, M., Fischer, R. A., Schuhmann, W. Small Methods 2019, 3, 1800415; https://doi.org/10.1002/smtd.201800415.Search in Google Scholar

24. Wang, B., Tang, C., Wang, H. F., Chen, X., Cao, R., Zhang, Q. Adv. Mater. 2019, 31, 1805658; https://doi.org/10.1002/adma.201805658.Search in Google Scholar PubMed

25. Yu, M., Dong, R., Feng, X. J. Am. Chem. Soc. 2020, 142, 12903–12915; https://doi.org/10.1021/jacs.0c05130.Search in Google Scholar PubMed

26. Chen, J. L., Zhang, H., Li, B., Yang, J. Z., Li, X. W., Zhang, T. X., He, C., Duan, C. Y., Wang, L. Y. ACS Appl. Energy Mater. 2020, 3, 10515–10524; https://doi.org/10.1021/acsaem.0c01552.Search in Google Scholar

27. Paul, A., Radinovic, K., Hazra, S., Mladenovic, D., Sljukic, B., Khan, R. A., Guedes da Silva, M. F., Pombeiro, A. J. L. Molecules 2022, 27, 7323; https://doi.org/10.3390/molecules27217323.Search in Google Scholar PubMed PubMed Central

28. Kumar, T., Karmakar, A., Halder, A., Koner, R. R. Energy Fuels 2022, 36, 2722–2730; https://doi.org/10.1021/acs.energyfuels.1c03446.Search in Google Scholar

29. Li, R. X., Jiang, Y. X., Dong, J. P., Sun, F. G., Wu, H. L. Z. Naturforsch. 2021, 76b, 529–534; https://doi.org/10.1515/znb-2021-0089.Search in Google Scholar

30. Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., Zou, Z. Energy Environ. Sci. 2011, 4, 4046–4051; https://doi.org/10.1039/c1ee01812d.Search in Google Scholar

31. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

32. Smart, Saint+. Area Detector Control and Integration Software; Bruker AXS Inc.: Madison, Wisconsin (USA), 2007.Search in Google Scholar

33. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

34. Burla, M. C., Caliandro, R., Camalli, M., CarrozziMn, B., Cascarano, G. L., Caro, L. D., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613; https://doi.org/10.1107/s0021889807010941.Search in Google Scholar

35. Xia, X. Z., Xia, L. X., Zhang, G., Li, Y. G., Wang, J., Xu, J. H., Wu, H. L. J. Mol. Struct. 2021, 1227, 129726; https://doi.org/10.1016/j.molstruc.2020.129726.Search in Google Scholar

36. Zhang, G., Xia, X. Z., Xu, J. H., Xia, L. X., Xia, C., Wu, H. L. Z. Naturforsch. 2020, 75b, 1005–1009; https://doi.org/10.1515/znb-2020-0094.Search in Google Scholar

37. Xia, X. Z., Xia, L. X., Zhang, G., Xu, J. H., Wang, C., Wu, Y. C., Zhao, K., Wu, H. L. J. Coord. Chem. 2020, 73, 3322–3331; https://doi.org/10.1080/00958972.2020.1857746.Search in Google Scholar

38. Dong, J. P., Li, R. X., Jiang, Y. X., Sun, F. G., Qu, Y., Wu, H. L. J. Chin. Chem. Soc. 2021, 68, 1934–1941; https://doi.org/10.1002/jccs.202100167.Search in Google Scholar

39. Wang, J. F., Feng, T., Li, Y. J., Sun, Y. X., Dong, W. K., Ding, Y. J. J. Mol. Struct. 2021, 1231, 129950; https://doi.org/10.1016/j.molstruc.2021.129950.Search in Google Scholar

40. Xia, X. Z., Xia, L. X., Zhang, G., Jiang, Y. X., Sun, F. G., Wu, H. L. Z. Naturforsch. 2021, 76b, 313–318; https://doi.org/10.1515/znb-2021-0003.Search in Google Scholar

41. Li, Y. J., Guo, S. Z., Feng, T., Xie, K. F., Dong, W. K. J. Mol. Struct. 2021, 1228, 129796; https://doi.org/10.1016/j.molstruc.2020.129796.Search in Google Scholar

42. Pu, L. M., Long, H. T., Zhang, Y., Bai, Y., Dong, W. K. Polyhedron 2017, 128, 57–67; https://doi.org/10.1016/j.poly.2017.02.033.Search in Google Scholar

43. Qu, Y., Zhao, K., Wang, C., Wu, Y. C., Xia, L. X., Wu, H. L. J. Mol. Struct. 2020, 1203, 127424; https://doi.org/10.1016/j.molstruc.2019.127424.Search in Google Scholar

44. Argyriou, D. N., Mitchell, J. F., Goodenough, J. B., Chmaissem, O., Short, S., Jorgensen, J. D. Phys. Rev. Lett. 1997, 78, 1568–1571; https://doi.org/10.1103/physrevlett.78.1568.Search in Google Scholar

45. Augustyn, V., Come, J., Lowe, M. A., Kim, J. W., Taberna, P. L., Tolbert, S. H., Dunn, B., Simon, P. Nat. Mater. 2013, 12, 518–522; https://doi.org/10.1038/nmat3601.Search in Google Scholar PubMed

46. Cao, X., Liu, Y., Wang, L., Li, G. Inorg. Chim. Acta 2012, 392, 16–24; https://doi.org/10.1016/j.ica.2012.05.042.Search in Google Scholar

47. Li, J., Guo, B., Liu, S., Li, G. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2014, 44, 1041–1049; https://doi.org/10.1080/15533174.2013.797463.Search in Google Scholar

48. Liang, X., Wang, J., Wang, Q., Zhang, Q., Li, G. Supramol. Chem. 2017, 29, 237–247; https://doi.org/10.1080/10610278.2016.1202414.Search in Google Scholar

49. Wang, C., Xiong, Z., Wang, T., Li, G. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2013, 43, 203–210; https://doi.org/10.1080/15533174.2012.740714.Search in Google Scholar

50. He, D. H., Liu, J. J., Wang, Y., Li, F., Li, B., He, J. B. Electrochim. Acta 2019, 308, 285–294; https://doi.org/10.1016/j.electacta.2019.04.038.Search in Google Scholar

51. Song, G., Atrens, A., John, St.D., Wu, X., Nairn, J. Corros. Sci. 1997, 39, 1981–2004; https://doi.org/10.1016/s0010-938x(97)00090-5.Search in Google Scholar

52. Liu, L., Zha, D. W., Wang, Y., He, J. B. Int. J. Hydrogen Energy 2014, 39, 14712–14719; https://doi.org/10.1016/j.ijhydene.2014.07.040.Search in Google Scholar

53. Park, J. Y., Aliaga, C., Renzas, J. R., Lee, H., Somorjai, G. A. Catal. Lett. 2009, 129, 1–6; https://doi.org/10.1007/s10562-009-9871-8.Search in Google Scholar

54. Shao, L., Qian, X., Wang, X., Li, H., Yan, R., Hou, L. Electrochim. Acta 2016, 213, 236–243; https://doi.org/10.1016/j.electacta.2016.07.113.Search in Google Scholar

55. Deng, W., Gai, Y., Li, D., Chen, Z., Xie, W., Yu, J., Jiang, F., Bao, X. Int. J. Hydrogen Energy 2022, 47, 16862–16872; https://doi.org/10.1016/j.ijhydene.2022.03.181.Search in Google Scholar

56. Chen, K. Y., Ray, D., Ziebel, M. E., Gaggioli, C. A., Gagliardi, L., Marinescu, S. C. ACS Appl. Mater. Interfaces 2021, 13, 34419–34427; https://doi.org/10.1021/acsami.1c08998.Search in Google Scholar PubMed

57. Cui, Y., Wu, C., Wei, T., Shi, Y., Sun, Z. Chem. Bull. 2011, 74, 742–749.Search in Google Scholar

58. Kaur-Ghumaan, S., Hasche, P., Spannenberg, A., Beweries, T. Dalton Trans. 2019, 48, 16322–16329; https://doi.org/10.1039/c9dt03626a.Search in Google Scholar PubMed

59. Shinagawa, T., Garcia-Esparza, A. T., Takanabe, K. Sci. Rep. 2015, 5, 13801; https://doi.org/10.1038/srep13801.Search in Google Scholar PubMed PubMed Central

Received: 2023-04-11
Accepted: 2023-08-08
Published Online: 2023-09-13
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0027/html
Scroll to top button