Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Perspective

Circular RNA Translation in Cardiovascular Diseases

Author(s): Lijun Wang, Xinxin Cui, Fei Jiang, Yuxue Hu, Wensi Wan, Guoping Li, Yanjuan Lin* and Junjie Xiao*

Volume 24, Issue 2, 2023

Published on: 13 September, 2023

Page: [66 - 71] Pages: 6

DOI: 10.2174/1389202924666230911121358

Abstract

Circular RNAs (circRNAs) are a class of endogenous functional RNA generated by backsplicing. Recently, circRNAs have been found to have certain coding potential. Proteins/peptides translated from circRNAs play essential roles in various diseases. Here, we briefly summarize the basic knowledge and technologies that are usually applied to study circRNA translation. Then, we focus on the research progress of circRNA translation in cardiovascular diseases and discuss the perspective and future direction of translatable circRNA study in cardiovascular diseases.

Keywords: circRNAs, cardiovascular diseases, internal ribosome entry sites (IRES), RNA m6A, proteins, ribosomal scanning.

[1]
Chen, L.; Huang, C.; Shan, G. Circular RNAs in physiology and non-immunological diseases. Trends Biochem. Sci., 2022, 47(3), 250-264.
[http://dx.doi.org/10.1016/j.tibs.2021.11.004] [PMID: 34865956]
[2]
Liu, C.X.; Chen, L.L. Circular RNAs: Characterization, cellular roles, and applications. Cell, 2022, 185(12), 2016-2034.
[http://dx.doi.org/10.1016/j.cell.2022.04.021] [PMID: 35584701]
[3]
Wang, LJ; Xu, GE; Spanos, M; Li, GP; Lei, ZY; Sluijter, JPG; Xiao, JJ Circular RNAs in cardiovascular diseases: Regulation and therapeutic applications. Research. 2023, 6, 0038.
[4]
Wen, S.; Qadir, J.; Yang, B.B. Circular RNA translation: Novel protein isoforms and clinical significance. Trends Mol. Med., 2022, 28(5), 405-420.
[http://dx.doi.org/10.1016/j.molmed.2022.03.003] [PMID: 35379558]
[5]
Merrick, W.C.; Pavitt, G.D. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol., 2018, 10(12), a033092.
[http://dx.doi.org/10.1101/cshperspect.a033092] [PMID: 29735639]
[6]
Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; Wong, C.C.L.; Xiao, X.; Wang, Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res., 2017, 27(5), 626-641.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[7]
Wang, Y.; Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA, 2015, 21(2), 172-179.
[http://dx.doi.org/10.1261/rna.048272.114] [PMID: 25449546]
[8]
Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; Shenzis, S.; Samson, M.; Dittmar, G.; Landthaler, M.; Chekulaeva, M.; Rajewsky, N.; Kadener, S. Translation of CircRNAs. Mol. Cell, 2017, 66(1), 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[9]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[10]
Jiang, T.; Xia, Y.; Lv, J.; Li, B.; Li, Y.; Wang, S.; Xuan, Z.; Xie, L.; Qiu, S.; He, Z.; Wang, L.; Xu, Z. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol. Cancer, 2021, 20(1), 66.
[http://dx.doi.org/10.1186/s12943-021-01358-y] [PMID: 33836754]
[11]
Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; Xiao, F.; Xu, Q.; Jiang, T.; Li, B.; Cheng, S.Y.; Zhang, N. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat. Cell Biol., 2021, 23(3), 278-291.
[http://dx.doi.org/10.1038/s41556-021-00639-4] [PMID: 33664496]
[12]
Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; Li, Z.; Ming, L.; Xie, B.; Zhang, N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13), 1805-1814.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[13]
Du, W.W.; Xu, J.; Yang, W.; Wu, N.; Li, F.; Zhou, L.; Wang, S.; Li, X.; He, A.T.; Du, K.Y.; Zeng, K.; Ma, J.; Lyu, J.; Zhang, C.; Zhou, C.; Maksimovic, K.; Yang, B.B. A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ. Res., 2021, 129(5), 568-582.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.318364] [PMID: 34261347]
[14]
Ingolia, N.T.; Hussmann, J.A.; Weissman, J.S. Ribosome profiling: Global views of translation. Cold Spring Harb. Perspect. Biol., 2019, 11(5), a032698.
[http://dx.doi.org/10.1101/cshperspect.a032698] [PMID: 30037969]
[15]
Wang, J.; Zhu, S.; Meng, N.; He, Y.; Lu, R.; Yan, G.R. ncRNA-encoded peptides or proteins and cancer. Mol. Ther., 2019, 27(10), 1718-1725.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.001] [PMID: 31526596]
[16]
van Heesch, S.; Witte, F.; Schneider-Lunitz, V.; Schulz, J.F.; Adami, E.; Faber, A.B.; Kirchner, M.; Maatz, H.; Blachut, S.; Sandmann, C.L.; Kanda, M.; Worth, C.L.; Schafer, S.; Calviello, L.; Merriott, R.; Patone, G.; Hummel, O.; Wyler, E.; Obermayer, B.; Mücke, M.B.; Lindberg, E.L.; Trnka, F.; Memczak, S.; Schilling, M.; Felkin, L.E.; Barton, P.J.R.; Quaife, N.M.; Vanezis, K.; Diecke, S.; Mukai, M.; Mah, N.; Oh, S.J.; Kurtz, A.; Schramm, C.; Schwinge, D.; Sebode, M.; Harakalova, M.; Asselbergs, F.W.; Vink, A.; de Weger, R.A.; Viswanathan, S.; Widjaja, A.A.; Gärtner-Rommel, A.; Milting, H.; dos Remedios, C.; Knosalla, C.; Mertins, P.; Landthaler, M.; Vingron, M.; Linke, W.A.; Seidman, J.G.; Seidman, C.E.; Rajewsky, N.; Ohler, U.; Cook, S.A.; Hubner, N. The translational landscape of the human heart. Cell, 2019, 178(1), 242-260.e29.
[http://dx.doi.org/10.1016/j.cell.2019.05.010] [PMID: 31155234]
[17]
Nielsen, A.F.; Bindereif, A.; Bozzoni, I.; Hanan, M.; Hansen, T.B.; Irimia, M.; Kadener, S.; Kristensen, L.S.; Legnini, I.; Morlando, M.; Jarlstad Olesen, M.T.; Pasterkamp, R.J.; Preibisch, S.; Rajewsky, N.; Suenkel, C.; Kjems, J. Best practice standards for circular RNA research. Nat. Methods, 2022, 19(10), 1208-1220.
[http://dx.doi.org/10.1038/s41592-022-01487-2] [PMID: 35618955]
[18]
Bánfai, B.; Jia, H.; Khatun, J.; Wood, E.; Risk, B.; Gundling, W.E., Jr; Kundaje, A.; Gunawardena, H.P.; Yu, Y.; Xie, L.; Krajewski, K.; Strahl, B.D.; Chen, X.; Bickel, P.; Giddings, M.C.; Brown, J.B.; Lipovich, L. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res., 2012, 22(9), 1646-1657.
[http://dx.doi.org/10.1101/gr.134767.111] [PMID: 22955977]
[19]
Kang, Y.J.; Yang, D.C.; Kong, L.; Hou, M.; Meng, Y.Q.; Wei, L.; Gao, G. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res., 2017, 45(W1), W12-W16.
[http://dx.doi.org/10.1093/nar/gkx428] [PMID: 28521017]
[20]
Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.P.; Li, W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res., 2013, 41(6), e74.
[http://dx.doi.org/10.1093/nar/gkt006] [PMID: 23335781]
[21]
Lin, M.F.; Jungreis, I.; Kellis, M.; Phylo, C.S.F. PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 2011, 27(13), i275-i282.
[http://dx.doi.org/10.1093/bioinformatics/btr209] [PMID: 21685081]
[22]
Mokrejš, M.; Mašek, T.; Vopálenský, V. Hlubuček, P.; Delbos, P.; Pospíšek, M. IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res., 2010, 38(Database issue), D131-D136.
[http://dx.doi.org/10.1093/nar/gkp981] [PMID: 19917642]
[23]
Zhao, J.; Li, Y.; Wang, C.; Zhang, H.; Zhang, H.; Jiang, B.; Guo, X.; Song, X. IRESbase: A comprehensive database of experimentally validated internal ribosome entry sites. Genomics Proteomics Bioinformatics, 2020, 18(2), 129-139.
[http://dx.doi.org/10.1016/j.gpb.2020.03.001] [PMID: 32512182]
[24]
Wu, W.; Ji, P.; Zhao, F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol., 2020, 21(1), 101.
[http://dx.doi.org/10.1186/s13059-020-02018-y] [PMID: 32345360]
[25]
Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol., 2019, 16(7), 899-905.
[http://dx.doi.org/10.1080/15476286.2019.1600395] [PMID: 31023147]
[26]
Pelletier, J.; Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334(6180), 320-325.
[http://dx.doi.org/10.1038/334320a0] [PMID: 2839775]
[27]
Huez, I.; Créancier, L.; Audigier, S.; Gensac, M.C.; Prats, A.C.; Prats, H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell. Biol., 1998, 18(11), 6178-6190.
[http://dx.doi.org/10.1128/MCB.18.11.6178] [PMID: 9774635]
[28]
Chen, C.; Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209), 415-417.
[http://dx.doi.org/10.1126/science.7536344] [PMID: 7536344]
[29]
Liang, W.C.; Wong, C.W.; Liang, P.P.; Shi, M.; Cao, Y.; Rao, S.T.; Tsui, S.K.W.; Waye, M.M.Y.; Zhang, Q.; Fu, W.M.; Zhang, J.F. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol., 2019, 20(1), 84.
[http://dx.doi.org/10.1186/s13059-019-1685-4] [PMID: 31027518]
[30]
Xiao, J.; Rosenzweig, A. Exercise and cardiovascular protection: Update and future. J. Sport Health Sci., 2021, 10(6), 607-608.
[http://dx.doi.org/10.1016/j.jshs.2021.11.001] [PMID: 34793994]
[31]
Bei, Y.; Wang, L.; Ding, R.; Che, L.; Fan, Z.; Gao, W.; Liang, Q.; Lin, S.; Liu, S.; Lu, X.; Shen, Y.; Wu, G.; Yang, J.; Zhang, G.; Zhao, W.; Guo, L.; Xiao, J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design—A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors’ Association. J. Sport Health Sci., 2021, 10(6), 660-674.
[http://dx.doi.org/10.1016/j.jshs.2021.08.002] [PMID: 34454088]
[32]
Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol., 2018, 15(4), 215-229.
[http://dx.doi.org/10.1038/nrcardio.2017.189] [PMID: 29213140]
[33]
Aufiero, S.; Reckman, Y.J.; Pinto, Y.M.; Creemers, E.E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol., 2019, 16(8), 503-514.
[http://dx.doi.org/10.1038/s41569-019-0185-2] [PMID: 30952956]
[34]
Guo, J.; Chen, L.W.; Huang, Z.Q.; Guo, J.S.; Li, H.; Shan, Y.; Chen, Z.R.; Yan, Y.M.; Zhu, J.N.; Guo, H.M.; Fang, X.H.; Shan, Z.X. Suppression of the inhibitory effect of circ_0036176-translated Myo9a-208 on cardiac fibroblast proliferation by miR-218-5p. J. Cardiovasc. Transl. Res., 2022, 15(3), 548-559.
[http://dx.doi.org/10.1007/s12265-022-10228-x] [PMID: 35288823]
[35]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[36]
Yu, P.; Wang, J.; Xu, G.; Zhao, X.; Cui, X.; Feng, J.; Sun, J.; Wang, T.; Spanos, M.; Lehmann, H.I.; Li, G.; Xu, J.; Wang, L.; Xiao, J. RNA m6A-regulated circ-ZNF609 suppression ameliorates doxorubicin-induced cardiotoxicity by upregulating FTO. JACC Basic Transl. Sci., 2023, 8(6), 677-698.
[http://dx.doi.org/10.1016/j.jacbts.2022.12.005] [PMID: 37426524]
[37]
Wang, L.; Yu, P.; Wang, J.; Xu, G.; Wang, T.; Feng, J.; Bei, Y.; Xu, J.; Wang, H.; Das, S.; Xiao, J. Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N6-Methyladenosine-Modified Yap expression. Research, 2022, 2022, 9825916.
[PMID: 35474903]
[38]
Sun, P.; Li, G. CircCode: A powerful tool for identifying circRNA coding ability. Front. Genet., 2019, 10, 981.
[http://dx.doi.org/10.3389/fgene.2019.00981] [PMID: 31649739]
[39]
Huang, W.; Ling, Y.; Zhang, S.; Xia, Q.; Cao, R.; Fan, X.; Fang, Z.; Wang, Z.; Zhang, G. TransCirc: An interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res., 2021, 49(D1), D236-D242.
[http://dx.doi.org/10.1093/nar/gkaa823] [PMID: 33074314]
[40]
Li, H.; Xie, M.; Wang, Y.; Yang, L.; Xie, Z.; Wang, H. riboCIRC: A comprehensive database of translatable circRNAs. Genome Biol., 2021, 22(1), 79.
[http://dx.doi.org/10.1186/s13059-021-02300-7] [PMID: 33685493]
[41]
Li, Y.; Zhou, H.; Chen, X.; Zheng, Y.; Kang, Q.; Hao, D.; Zhang, L.; Song, T.; Luo, H.; Hao, Y.; Chen, R.; Zhang, P.; He, S. SmProt: A reliable repository with comprehensive annotation of small proteins identified from ribosome profiling. Genomics Proteomics Bioinformatics, 2021, 19(4), 602-610.
[http://dx.doi.org/10.1016/j.gpb.2021.09.002] [PMID: 34536568]
[42]
Chen, X.; Han, P.; Zhou, T.; Guo, X.; Song, X.; Li, Y. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep., 2016, 6(1), 34985.
[http://dx.doi.org/10.1038/srep34985] [PMID: 27725737]
[43]
Meng, X.; Chen, Q.; Zhang, P.; Chen, M. CircPro: An integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics, 2017, 33(20), 3314-3316.
[http://dx.doi.org/10.1093/bioinformatics/btx446] [PMID: 29028266]

© 2024 Bentham Science Publishers | Privacy Policy