Skip to main content
Log in

Nanoparticles Application in Promoting the Growth of a More Protective Oxide Scale at High Temperatures

  • Review
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Owing to a very high surface-to-volume ratio, nanoparticles (NPs) have unique physical and chemical properties distinguishable from those of their bulk counterparts. They have become innovative constituents in the strategy of designing and developing advanced functional materials and medical materials. So far, there have been few studies on the theory and practice of applying NPs to promote the growth of a more protective oxide scale at high temperatures. In this contribution, we report the research progress by application of specific metal and metal oxide NPs in: (i) developing chromia- and alumina-forming coatings; (ii) facilitating the selective oxidation of alloys; (iii) assisting direct thermal growth of α-alumina on Ni–Al intermetallic compounds; and (iv) increasing the oxidation resistance of thermally-grown oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. H. Gleiter, Progress Mater. Sci. 33, 1989 (223).

    Article  CAS  Google Scholar 

  2. H. Gleiter, Acta Materialia. 48, 2000 (1).

    Article  CAS  Google Scholar 

  3. C. Suryanarayana, International Materials Reviews. 40, 1995 (41).

    Article  CAS  Google Scholar 

  4. S. C. Tjong and H. Chen, Materials Science and Engineering: R: Reports. 45, 2004 (1).

    Article  Google Scholar 

  5. B. V. Mahesh and R. K. Singh Raman, Metallurgical and Materials Transactions A. 45, 2014 (5799).

    Article  CAS  Google Scholar 

  6. X. Peng and F. Wang, Chapter 15: Oxidation Resistant Nanocrystalline Coatings. in Developments in High Temperature Corrosion and Protection of Materials, Woodhead Pub Ltd. eds. W. Gao and Z. Li (Cambridge, England, UK, 2008).

    Google Scholar 

  7. C. Wagner, Z. Elektrochem 63, (7), 1959 (772).

    CAS  Google Scholar 

  8. Z. Huang, X. Peng, C. Xu, and F. Wang, Journal of The Electrochemical Society. 156, 2009 (C95).

    Article  CAS  Google Scholar 

  9. G. Liu, J. Lu, and K. Lu, Materials Science and Engineering: A. 286, 2000 (91).

    Article  Google Scholar 

  10. Y. Huang, X. Peng, Z. Dong, and Y. Cui, Corrosion Science. 143, 2018 (76).

    Article  CAS  Google Scholar 

  11. S. S. Rajahram, T. J. Harvey, J. C. Walker, S. C. Wang, R. J. K. Wood, and G. Lalev, Wear. 271, 2011 (1302).

    Article  CAS  Google Scholar 

  12. A. A. Tchizhik, A. I. Rybnikov, I. S. Malashenko, S. A. Leontiev, and A. S. Osyka, Surface and Coatings Technology. 78, 1996 (113).

    Article  CAS  Google Scholar 

  13. Z. Liu, W. Gao, K. L. Dahm, and F. Wang, Acta Materialia. 46, 1998 (1691).

    Article  CAS  Google Scholar 

  14. M. H. Li, Z. Y. Zhang, X. F. Sun, J. G. Li, F. S. Yin, W. Y. Hu, and Z. Q. Hu, Surface and Coatings Technology. 165, 2003 (241).

    Article  CAS  Google Scholar 

  15. X. Peng, J. Yan, Y. Zhou, and F. Wang, Acta Materialia. 53, 2005 (5079).

    Article  CAS  Google Scholar 

  16. X. Peng and F. Wang, Corrosion Science. 45, 2003 (2293).

    Article  CAS  Google Scholar 

  17. S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, and J. Dian, Surface and Coatings Technology. 86, 1996 (394).

    Article  Google Scholar 

  18. M. Amaral, F. Mohasseb, F. J. Oliveira, F. Benedic, R. F. Silva, and A. Gicquel, Thin Solid Films. 482, 2005 (232).

    Article  CAS  Google Scholar 

  19. M. L. Lau, E. Strock, A. Fabel, C. J. Lavernia, and E. J. Lavernia, Nanostructured Materials. 10, 1998 (723).

    Article  CAS  Google Scholar 

  20. D. Stover, G. Pracht, H. Lehmann, M. Dietrich, J. E. Doring, and R. Vassen, Journal of Thermal Spray Technology. 13, 2004 (76).

    Article  Google Scholar 

  21. P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Surface and Coatings Technology. 204, 2010 (3962).

    Article  CAS  Google Scholar 

  22. J. A. Picas, A. Forn, A. Igartua, and G. Mendoza, Surface and Coatings Technology. 174, 2003 (1095).

    Article  Google Scholar 

  23. X. Yang, X. Peng, C. Xu, and F. Wang, Journal of the Electrochemical Society. 156, 2009 (C167).

    Article  CAS  Google Scholar 

  24. X. Peng, Nanoscale. 2, 2010 (262).

    Article  CAS  Google Scholar 

  25. H. Zhen and X. Peng, Surface and Coatings Technology. 352, 2018 (541).

    Article  CAS  Google Scholar 

  26. X. Peng, H. Zhen, L. Tian, X. Wang, K. Wang, and Y. Xie, Composites Part B: Engineering. 234, 2022 (109721).

    Article  CAS  Google Scholar 

  27. W. Lewandowski, et al., Nat. Commun. 4, 2015 (9590).

    Google Scholar 

  28. S. F. Chen, J. P. Li, K. Qian, W. P. Xu, Y. Lu, W. X. Huang, and S. H. Yu, Nano Research. 3, 2010 (244).

    Article  CAS  Google Scholar 

  29. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, and P. K. Sharma, Materials Chemistry and Physics. 134, 2012 (1121).

    Article  CAS  Google Scholar 

  30. J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, Nature Materials. 3, 2004 (918).

    Article  CAS  Google Scholar 

  31. R. R. Kakarla, K. P. Lee, and A. I. Gopalan, Journal of nanoscience and nanotechnology. 7, 2007 (3117).

    Article  Google Scholar 

  32. S. Mahendia, P. K. Goyal, A. K. Tomar, R. P. Chahal, and S. Kumar, Journal of Electronic Materials. 45, 2016 (5418).

    Article  CAS  Google Scholar 

  33. S. P. Solodovnikov, L. M. Bronshtein, O. A. Platonova, T. P. Loginova, E. A. Yudanova, M. A. Apresova, I. A. Khotina, and P. M. Valetskii, Polymer Science Series A. 55, 2013 (749).

    Article  CAS  Google Scholar 

  34. J. S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J. D. Cashion, N. Kawamura, H. Ohsawa, I. G. De Muro, K. Suzuki, F. Plazaola, and T. Rojo, Nano Letters. 8, 2008 (661).

    Article  CAS  Google Scholar 

  35. Y. Ju, X. Li, J. Feng, Y. Ma, J. Hu, and X. Chen, Applied surface science. 316, 2014 (132).

    Article  CAS  Google Scholar 

  36. M. Muhlberg, Journal of Materials Chemistry A. 5, 2017 (9465).

    Article  Google Scholar 

  37. Y. Z. Li, Z. J. Wang, Y. Bai, W. Liu, and Z. D. Zhang, Journal of the American Ceramic Society. 102, 2019 (5253).

    Article  CAS  Google Scholar 

  38. G. Centi and S. Perathoner, European Journal of Inorganic Chemistry. 26, 2009 (3851).

    Article  Google Scholar 

  39. J. W. Xu, K. Yao, and Z. K. Xu, Nanoscale. 11, 2019 (8680).

    Article  CAS  Google Scholar 

  40. K. Schaefer and A. Miszczyk, Corrosion Science. 66, 2013 (380).

    Article  CAS  Google Scholar 

  41. S. Y. Arman, B. Ramezanzadeh, S. Farghadani, M. Mehdipour, and A. Rajabi, Corrosion Science. 77, 2013 (118).

    Article  CAS  Google Scholar 

  42. X. Zhang, F. Wang, and Y. Du, Surface and Coatings Technology 201, 2007 (7241).

    Article  CAS  Google Scholar 

  43. Y. Shao, Y. Li, Y. Du, and F. Wang, Corrosion. 62, 2006 (483).

    Article  CAS  Google Scholar 

  44. L. L. Xue, L. K. Xu, and Q. F. Li, Journal of Materials Sciences and Technology. 23, 2007 (563).

    CAS  Google Scholar 

  45. A. Madhankumar, S. Nagarajan, N. Rajendran, and T. Nishimura, Journal of Solid State Electrochemistry. 16, 2012 (2085).

    Article  CAS  Google Scholar 

  46. R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, Nano Letters. 3, 2003 (253).

    Article  CAS  Google Scholar 

  47. S. T. Khan, A. A. Al-Khedhairy, and J. Musarrat, Journal of Nanoparticle Research. 17, 2015 (276).

    Article  Google Scholar 

  48. X. Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. H. Chen, S. Q. Zhao, Z. Li, and Z. Q. Lin, Energy & Environmental Science. 10, 2017 (402).

    Article  CAS  Google Scholar 

  49. Z. Pei, X. Zheng, and Z. Li, Journal of Nanoscience and Nanotechnology. 16, 2016 (4655).

    Article  CAS  Google Scholar 

  50. N. Yadav, 3 Biotech. 12, 2022 (121).

    Article  Google Scholar 

  51. P. Kofstad, High temperature corrosion, (Elsevier Applied Science Publisher, New York, 1988).

    Google Scholar 

  52. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Sydney, 2016), pp. 193–260.

    Book  Google Scholar 

  53. J. Zhao, X. Peng, Y. Wang, and F. Wang, Acta Materialia. 55, 2007 (3193).

    Article  CAS  Google Scholar 

  54. N. Gugliemi, Journal of the Electrochemical Society. 119, 1972 (1009).

    Article  Google Scholar 

  55. G. Palumbo, D. M. Doyle, A. M. El-Sherik, U. Erb, and K. T. Aust, Scripta Metallurgica et Materialia. 25, 1991 (679).

    Article  CAS  Google Scholar 

  56. Y. Zhang, X. Peng, and F. Wang, Materials Letters. 58, 2004 (1134).

    Article  CAS  Google Scholar 

  57. Z. Dong, Y. Xie, and X. Peng, Corrosion Science. 194, 2022 (109915).

    Article  CAS  Google Scholar 

  58. Z. Dong, X. Peng, Y. Guan, L. Li, and F. Wang, Corrosion Science. 62, 2012 (147).

    Article  CAS  Google Scholar 

  59. X. Peng, L. Li, and F. Wang, Scripta Materialia. 60, 2009 (699).

    Article  CAS  Google Scholar 

  60. C. Zhang, X. Peng, J. Zhao, and F. Wang, Journal of the Electrochemical Society. 152, 2005 (B321).

    Article  CAS  Google Scholar 

  61. P. Villars, A. Prince, and H. Okamota, Handbook of Ternary Alloy Phase Diagrams, (ASM International, Mater Park, USA, 1997).

    Google Scholar 

  62. D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, (Chapman & Hall, London, 1992), p. 60.

    Google Scholar 

  63. Y. Niu, Z. Q. Cao, F. Gesmundo, G. Farnè, G. Randi, and C. L. Wang, Corrosion Science. 45, 2003 (1125).

    Article  CAS  Google Scholar 

  64. Z. Huang, X. Peng, and F. Wang, Oxidation of Metals. 65, 2006 (223).

    Article  CAS  Google Scholar 

  65. Z. Huang, X. Peng, C. Xu, and F. Wang, Journal of Materials Research. 22, 2007 (3166).

    Article  CAS  Google Scholar 

  66. Y. Zhou, X. Peng, and F. Wang, Oxidation of Metals. 64, 2005 (169).

    Article  CAS  Google Scholar 

  67. D. F. Susan, A. R. Marder, and K. Barmak, Thin Solid Films. 307, 1997 (133).

    Article  CAS  Google Scholar 

  68. D. F. Susan and A. R. Marder, Oxidation of metals. 57, 2002 (159).

    Article  CAS  Google Scholar 

  69. X. Peng, M. Li, and F. Wang, Corrosion Science. 53, 2011 (1616).

    Article  CAS  Google Scholar 

  70. X. Yang, X. Peng, and F. Wang, Scripta Materialia. 56, 2007 (509).

    Article  CAS  Google Scholar 

  71. X. Yang, X. Peng, and F. Wang, Scripta Materialia. 56, 2007 (891).

    Article  CAS  Google Scholar 

  72. H. Zhen and X. Peng, Corrosion Science. 150, 2019 (121).

    Article  CAS  Google Scholar 

  73. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 295, 1980 (309).

    CAS  Google Scholar 

  74. D. P. Moon, Materials Science and Technology. 5, 1989 (754).

    Article  CAS  Google Scholar 

  75. J. Jedlinski, Solid State Phenomena. 21&22, 1992 (335).

    Article  Google Scholar 

  76. W. J. Quadakkers and L. Singheiser, Materials Science Forum. 369–372, 2001 (77).

    Article  Google Scholar 

  77. B.A. Pint, Progress in understanding the reactive element effect since the Whittle and Stringer literature review in Proc. John Stringer Symp. on High Temp. Corrosion. (eds Tortorelli, P.F. and Hou, P.Y.) 27 – 37 (Ohio, 2003).

  78. P. Y. Hou, Materials Science Forum. 696, 2011 (39).

    Article  CAS  Google Scholar 

  79. J. Forster, B. P. Cameron, and J. A. Carews, Transactions of the IMF. 63, 1985 (115).

    Article  Google Scholar 

  80. J. Foster, et al. U.K. Patent GB2167446 (1986), also U.S. Patent. 4,789,441, 1988.

  81. F. J. Honey, E. C. Kedward, and V. Wride, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 4, 1986 (2593).

    Article  CAS  Google Scholar 

  82. Y. Zhang, Jom. 67, 2015 (2599).

    Article  CAS  Google Scholar 

  83. B. L. Bates, L. Z. Zhang, and Y. Zhang, Surface Engineering. 31, (3), 2015 (202).

    Article  CAS  Google Scholar 

  84. Y. Xie, L. Tian, L. You, X. Peng, Development and high-temperature corrosion performance of MCrAl(Y) coatings prepared by electrochemical deposition: A brief review, this issue of the journal.

  85. C. Wagner, Journal of the electrochemical Society. 99, 1952 (369).

    Article  CAS  Google Scholar 

  86. D. L. Douglass, Corrosion Science. 8, 1968 (665).

    Article  CAS  Google Scholar 

  87. Y. Xie, Y. Huang, Y. Li, and X. Peng, Corrosion Science. 190, 2021 (109717).

    Article  CAS  Google Scholar 

  88. I. Levin and D. Brandon, Journal of the American Ceramic Society. 81, 1998 (1995).

    Article  CAS  Google Scholar 

  89. P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. L. Le Loarer, J. P. Jolivet, and C. Froidefond, Alumina, (Handbook of porous solids, 2002), p. 1591.

    Google Scholar 

  90. S. L. Shang, Y. Wang, and Z. K. Liu, Applied Physics Letters. 90, 2007 (349).

    Google Scholar 

  91. M. W. Brumm and H. J. Grabke, Corrosion Science. 33, 1992 (1677).

    Article  CAS  Google Scholar 

  92. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metallurgical Transactions A. 20, 1989 (499).

    Article  Google Scholar 

  93. E. Schumann, Oxidation of Metals. 43, 1995 (157).

    Article  CAS  Google Scholar 

  94. V. Tolpygo and D. R. Clarke, Materials at High Temperatures. 17, 2000 (59).

    Article  CAS  Google Scholar 

  95. X. Peng, T. Li, and W. P. Pan, Scripta Materialia. 44, 2001 (1033).

    Article  CAS  Google Scholar 

  96. E. D. Specht, P. F. Tortorelli, and P. Zschack, Powder Diffraction. 19, 2004 (69).

    Article  CAS  Google Scholar 

  97. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials Science Forum. 461–464, 2004 (671).

    Article  Google Scholar 

  98. L. Zheng, X. Peng, and F. Wang, Corrosion Science. 53, 2011 (597).

    Article  CAS  Google Scholar 

  99. W. Ren, Q. Li, J. Song, C. Xiao, Z. Xu, L. He, and C. Cao, Materials Research Innovations. 18, 2015 (945).

    Google Scholar 

  100. B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics. 78, 1995 (99).

    Article  CAS  Google Scholar 

  101. X. F. Zhang, K. Thaidigsmann, J. Ager, and P. Y. Hou, Journal of Materials Research. 21, 2006 (1409).

    Article  Google Scholar 

  102. P. Brito, H. Pinto, C. Genzel, M. Klaus, and A. Kaysser-Pyzalla, Acta Materialia. 60, 2012 (1230).

    Article  CAS  Google Scholar 

  103. P. Brito, H. Pinto, and A. Kostka, Corrosion Science. 105, 2016 (100).

    Article  CAS  Google Scholar 

  104. B. A. Pint, M. Treska, and L. W. Hobbs, Oxidation of Metals. 47, 1997 (1).

    Article  CAS  Google Scholar 

  105. P. Burtin, J. P. Brunelle, M. Pijolat, and M. Soustelle, Applied Catalysis. 34, 1987 (225).

    Article  CAS  Google Scholar 

  106. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, and S. Ukai, Oxidation of Metals. 73, 2010 (375).

    Article  CAS  Google Scholar 

  107. Y. Huang and X. Peng, Corrosion Science. 112, 2016 (226).

    Article  CAS  Google Scholar 

  108. C. Xu, X. Peng, and F. Wang, Corrosion Science. 52, 2010 (740).

    Article  CAS  Google Scholar 

  109. X. Tan, X. Peng, and F. Wang, Corrosion Science. 85, 2014 (280).

    Article  CAS  Google Scholar 

  110. D. M. Lipkin and D. R. Clarke, Oxidation of Metals. 45, 1996 (267).

    Article  CAS  Google Scholar 

  111. X. Peng, D. R. Clarke, and F. Wang, Oxidation of Metals. 60, 2003 (225).

    Article  CAS  Google Scholar 

  112. J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, Science. 277, 1997 (788).

    Article  CAS  Google Scholar 

  113. Y. Huang, X. Peng, and X.-Q. Chen, Corrosion Science. 153, 2019 (109).

    Article  CAS  Google Scholar 

  114. S. Kachi, K. Momiyama, and S. Shimizu, Journal of the Physical Society of Japan. 18, 1963 (106).

    Article  Google Scholar 

  115. Y. Huang, X. Peng, and X.-Q. Chen, Journal of Alloys and Compounds. 863, 2021 (158666).

    Article  CAS  Google Scholar 

  116. A. Khan, Y. Huang, Z. Dong, and X. Peng, Corrosion Science. 150, 2019 (91).

    Article  CAS  Google Scholar 

  117. A. Khan, Z. Dong, and X. Peng, Surface and Coatings Technology. 384, 2020 (125861).

    Article  Google Scholar 

  118. X. Wang, X. Peng, Development of nickel aluminide coating with increased oxidation resistance: Externally or internally dispersing TiO2 nanoparticles, in preparation.

  119. L.B. Pfeil, Improvement in Heat-resisting Alloys. UK Patent, No. 459848 (1937).

  120. W. D. Klopp, Aerospace Structural Metals Handbook, Code4106, (Purdue Research Foundation, West Lafayette, 1992), p. 1.

    Google Scholar 

  121. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, Oxidation of Metals. 29, 1988 (445).

    Article  CAS  Google Scholar 

  122. M. C. García-Alonso, J. L. González-Carrasco, M. L. Escudero, and J. Chao, Oxidation of Metals. 53, 2000 (77).

    Article  Google Scholar 

  123. S. Weinbruch, A. Anastassiadis, H. M. Ortner, H. P. Martinz, and P. Wilhartitz, Oxidation of metals. 51, 1999 (111).

    Article  CAS  Google Scholar 

  124. Y. Z. Shen, T. T. Zou, S. Zhang, and L. Z. Sheng, ISIJ international. 53, 2013 (304).

    Article  CAS  Google Scholar 

  125. A. O. F. Hayama, H. R. Z. Sandim, J. F. C. Lins, M. F. Hupalo, and A. F. Padilha, Materials Science and Engineering: A. 371, 2004 (198).

    Article  Google Scholar 

  126. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, Journal of the Electrochemical Society. 131, 1984 (923).

    Article  CAS  Google Scholar 

  127. K. L. Luthra and C. L. Briant, Oxidation of metals. 26, 1986 (397).

    Article  CAS  Google Scholar 

  128. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Journal of the Electrochemical Society. 134, 1987 (1871).

    Article  CAS  Google Scholar 

  129. K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz, and G. J. Yurek, Journal of the Electrochemical Society. 134, 1987 (3207).

    Article  CAS  Google Scholar 

  130. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Materials at High Temperatures. 13, 1995 (3).

    Article  CAS  Google Scholar 

  131. X. Peng, D. Ping, T. Li, and W. Wu, Journal of the Electrochemical Society. 145, 1998 (389).

    Article  CAS  Google Scholar 

  132. X. Peng, Oxidation of metals. 51, 1999 (291).

    Article  CAS  Google Scholar 

  133. P. W. Tasker and D. M. Duffy, Philosophical Magazine A. 47, 1983 (L45).

    Article  CAS  Google Scholar 

  134. D. M. Duffy and P. W. Tasker, Philosophical Magazine A. 54, 1986 (759).

    Article  CAS  Google Scholar 

  135. F. N. Rhines and R. G. Gonnell Jr., Journal of the Electrochemical Society. 124, 1977 (1122).

    Article  CAS  Google Scholar 

  136. A. Atkinson, R. I. Taylor, and P. D. Goode, Oxidation of metals. 13, 1979 (519).

    Article  CAS  Google Scholar 

  137. A. Atkinson, R. I. Taylor, and A. F. Hughes, Philosophical Magazine A. 45, 1982 (823).

    Article  CAS  Google Scholar 

  138. A. Atkinson and D. J. Smart, Journal of the Electrochemical Society. 135, 1988 (2886).

    Article  CAS  Google Scholar 

  139. X. Peng, J. Yan, L. Zheng, and C. Xu, Materials and Corrosion. 62, 2011 (514).

    Article  CAS  Google Scholar 

  140. J. Yan, X. Peng, and F. Wang, Materials Science and Engineering: A. 426, 2006 (26).

    Google Scholar 

  141. X. Peng, J. Yan, Z. Dong, C. Xu, and F. Wang, Corrosion Science. 52, 2010 (1863).

    Article  CAS  Google Scholar 

  142. H. Zhang, X. Peng, J. Zhao, and F. Wang, Electrochemical and solid-state letters. 19, 2007 (C13).

    Google Scholar 

  143. X. Peng, Y. Guan, Z. Dong, C. Xu, and F. Wang, Corrosion Science. 53, 2011 (1984).

    Google Scholar 

  144. X. Wang, X. Peng, X. Tan, and F. Wang, Scientific Reports. 6, 2016 (29593).

    Article  CAS  Google Scholar 

  145. B. A. Pint, Oxidation of Metals. 45, 1996 (1).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by Key project of Jiangxi Provincial Natural Science Foundation (project Grant No. 20181ACB20009) and National Natural Science Foundation of China (NSFC, project Grant No. 51771088).

Author information

Authors and Affiliations

Authors

Contributions

XP Conceptualization, Supervision, Writing-Review and editing, Funding acquisition, Project administration. YH Investigation, Formal analysis. Xiaolan Wang: Investigation, Formal analysis. YX Data curation, Writing - Original draft.

Corresponding author

Correspondence to Xiao Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Huang, Y., Wang, X. et al. Nanoparticles Application in Promoting the Growth of a More Protective Oxide Scale at High Temperatures. High Temperature Corrosion of mater. 100, 413–450 (2023). https://doi.org/10.1007/s11085-023-10185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10185-z

Keywords

Navigation