Skip to main content
Log in

Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury

  • Review
  • Published:
Neurotherapeutics

Abstract

Multiple phase III randomized controlled trials (RCTs) for pharmacologic interventions in traumatic brain injury (TBI) have failed despite promising results in experimental models. The heterogeneity of TBI, in terms of pathomechanisms and impacted brain structures, likely contributes to these failures. Biomarkers have been recommended to identify patients with relevant pathology (predictive biomarkers) and confirm target engagement and monitor therapy response (pharmacodynamic biomarkers). Our group focuses on traumatic cerebrovascular injury as an understudied endophenotype of TBI and is validating a predictive and pharmacodynamic imaging biomarker (cerebrovascular reactivity; CVR) in moderate-severe TBI. We aim to extend these studies to milder forms of TBI to determine the optimal dose of sildenafil for maximal improvement in CVR. We will conduct a phase II dose-finding study involving 160 chronic TBI patients (mostly mild) using three doses of sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor. The study measures baseline CVR and evaluates the effect of escalating sildenafil doses on CVR improvement. A 4-week trial of thrice daily sildenafil will assess safety, tolerability, and clinical efficacy. This dual-site 4-year study, funded by the Department of Defense and registered in ClinicalTrials.gov (NCT05782244), plans to launch in June 2023. Biomarker-informed RCTs are essential for developing effective TBI interventions, relying on an understanding of underlying pathomechanisms. Traumatic microvascular injury (TMVI) is an attractive mechanism which can be targeted by vaso-active drugs such as PDE-5 inhibitors. CVR is a potential predictive and pharmacodynamic biomarker for targeted interventions aimed at TMVI. (Trial registration: NCT05782244, ClinicalTrials.gov).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be available through the Federal Interagency Traumatic Brain Injury Reserarch (FITBIR) database.

References

  1. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths–United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

    Article  PubMed  Google Scholar 

  3. Narayan RK, Michel ME, Ansell BJ, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–57.

    Article  PubMed  Google Scholar 

  4. Siesjo BK. Basic mechanisms of traumatic brain damage. Ann Emerg Med. 1993;22:959–69.

    Article  CAS  PubMed  Google Scholar 

  5. McIntosh TK. Novel pharmacologic therapies in the treatment of experimental brain injury: a review. J Neurotrauma. 1993;10:215–61.

    Article  CAS  PubMed  Google Scholar 

  6. McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental brain injury: 1998. J Neurotrauma. 1998;15:731–69.

    Article  CAS  PubMed  Google Scholar 

  7. Doppenberg EMR, Bullock R. Clinical neuroprotective trials in severe traumatic brain injury: lessons from previous studies. J Neurotrauma. 1997;14:71–80.

    Article  CAS  PubMed  Google Scholar 

  8. Diaz-Arrastia R, Kochanek PM, Bergold P, et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2013.

  9. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25:719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kenney K, Amyot F, Moore C, et al. Phosphodiesterase-5 inhibition potentiates cerebrovascular reactivity in chronic traumatic brain injury. Ann Clin Transl Neurol. 2018;5:418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amyot F, Kenney K, Moore C, et al. Imaging of cerebrovascular function in chronic traumatic brain injury. J Neurotrauma. 2018;35:1116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bartnik-Olson BL, Holshouser B, Wang H, et al. Impaired neurovascular unit function contributes to persistent symptoms after concussion: a pilot study. J Neurotrauma. 2014;31:1497–506.

    Article  PubMed  Google Scholar 

  13. Tong KA, Ashwal S, Holshouser BA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56:36–50.

    Article  PubMed  Google Scholar 

  14. Yuh EL, Mukherjee P, Lingsma HF, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2012;73:224–35.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tomlinson BE. Brain-stem lesions after head injury. J Clin Pathol Suppl (R Coll Pathol). 1970;4:154–65.

    Article  CAS  PubMed  Google Scholar 

  16. Graham DI, Gennarelli TA, McIntosh TK. Trauma. In: Graham DI, McKenzie JE, editors. Greenfield’s neuropathology. 7th ed. London: Edward Arnold; 2002. p. 823–98.

    Google Scholar 

  17. Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.

    Article  PubMed  Google Scholar 

  18. Rodriguez-Baeza A, Reina-de la Torre F, Poca A, Marti M, Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol. 2003;273:583–93.

  19. Oppenheimer DR. Microscopic lesions in the brain following head injury. J Neurol Neurosurg Psychiatry. 1968;31:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995;12:565–72.

    Article  CAS  PubMed  Google Scholar 

  21. McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68:709–35.

    Article  PubMed  Google Scholar 

  22. McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64.

    Article  PubMed  Google Scholar 

  23. Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4:134ra60.

  24. Tagge CA, Fisher AM, Minaeva OV, et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141:422–58.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baranova AI, Wei EP, Ueda Y, Sholley MM, Kontos HA, Povlishock JT. Cerebral vascular responsiveness after experimental traumatic brain injury: the beneficial effects of delayed hypothermia combined with superoxide dismutase administration. J Neurosurg. 2008;109:502–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gao G, Oda Y, Wei EP, Povlishock JT. The adverse pial arteriolar and axonal consequences of traumatic brain injury complicated by hypoxia and their therapeutic modulation with hypothermia in rat. J Cereb Blood Flow Metab. 2010;30:628–37.

    Article  PubMed  Google Scholar 

  27. Forbes ML, Hendrich KS, Kochanek PM, et al. Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats. J Cereb Blood Flow Metab. 1997;17:865–74.

    Article  CAS  PubMed  Google Scholar 

  28. Raji CA, Tarzwell R, Pavel D, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS ONE. 2014;9: e91088.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei EP, Hamm RJ, Baranova AI, Povlishock JT. The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma. 2009;26:527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oda Y, Gao G, Wei EP, Povlishock JT. Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab. 2011;31:1143–54.

    Article  CAS  PubMed  Google Scholar 

  31. Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab. 2009;29:575–84.

    Article  CAS  PubMed  Google Scholar 

  32. Kassner A, Roberts TP. Beyond perfusion: cerebral vascular reactivity and assessment of microvascular permeability. Top Magn Reson Imaging. 2004;15:58–65.

    Article  PubMed  Google Scholar 

  33. Chassidim Y, Veksler R, Lublinsky S, Pell GS, Friedman A, Shelef I. Quantitative imaging assessment of blood-brain barrier permeability in humans. Fluids Barriers CNS. 2013;10:9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim J, Whyte J, Patel S, et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma. 2010;27:1399–411.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li L, Jiang Q, Zhang L, et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 2007;1132:185–92.

    Article  CAS  PubMed  Google Scholar 

  37. Wu H, Jiang H, Lu D, et al. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery. 2011;68:1363–71.

    Article  PubMed  Google Scholar 

  38. Villapol S, Yaszemski AK, Logan TT, Sanchez-Lemus E, Saavedra JM, Symes AJ. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 2012;37:2817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138:3299–315.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang F, Signore AP, Zhou Z, Wang S, Cao G, Chen J. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms. J Neurosci Res. 2006;83:1241–51.

    Article  CAS  PubMed  Google Scholar 

  41. Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007;104:5638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scrimgeour AG, Condlin ML. Nutritional treatment for traumatic brain injury. J Neurotrauma. 2014;31:989–99.

    Article  PubMed  Google Scholar 

  43. Hasadsri L, Wang BH, Lee JV, et al. Omega-3 fatty acids as a putative treatment for traumatic brain injury. J Neurotrauma. 2013;30:897–906.

    Article  PubMed  Google Scholar 

  44. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramos-Cejudo J, Wisniewski T, Marmar C, et al. Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. EBioMedicine. 2018;28:21–30.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, et al. “Persistent CO2 reactivity deficits are associated with neurological dysfunction up to one year after repetitive mild closed head injury in adolescent mice.” J Cereb Blood Flow Metab. 2021;41(12):3260–3272.

  47. Chan, et al. Cerebrovascular responses to Ox-CO2 exchange ratio under brief breath-hold challenge in patients with chronic mild TBI. J Neurotrauma. 2021;38(20):2851–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez UA, et al. Effects of mild blast traumatic brain injury on cerebral vascular, histopathological and behavioral outcomes in rats. J Neurotrauma. 2018;35(2):375–92.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dodd AB. Persistent alterations in CVR in response to hypercapnia following pediatric mild TBI. J Cereb Blood Flow Metab. 2020;40(12):2491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Champagne AA, et al. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based CVR associated with a history of sport concussion. Brain Inj. 2019;33(11):1479–89.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA. Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res. 1980;46:37–47.

    Article  CAS  PubMed  Google Scholar 

  52. Furuya Y, Hlatky R, Valadka AB, Diaz P, Robertson CS. Comparison of cerebral blood flow in computed tomographic hypodense areas of the brain in head-injured patients. Neurosurgery. 2003;52:340–6.

    Article  PubMed  Google Scholar 

  53. Menon DK. Brain ischaemia after traumatic brain injury: lessons from 15O2 positron emission tomography. Curr Opin Crit Care. 2006;12:85–9.

    Article  PubMed  Google Scholar 

  54. Bonne O, Gilboa A, Louzoun Y, et al. Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Res. 2003;124:141–52.

    Article  PubMed  Google Scholar 

  55. Barkai G, Goshen E, Tzila ZS, et al. Acetazolamide-enhanced neuroSPECT scan reveals functional impairment after minimal traumatic brain injury not otherwise discernible. Psychiatry Res. 2004;132:279–83.

    Article  PubMed  Google Scholar 

  56. Lewine JD, Davis JT, Bigler ED, et al. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22:141–55.

    Article  PubMed  Google Scholar 

  57. Edlow BL, Wu O. Advanced neuroimaging in traumatic brain injury. Semin Neurol. 2012;32:374–400.

    PubMed  Google Scholar 

  58. Kim J, Whyte J, Patel S, et al. A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair. 2012;26:870–80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Neurology. 2019;93(21):e1980–92. https://doi.org/10.1212/WNL.0000000000008523.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Symptom correlates of cerebral blood flow following acute concussion. Neuroimage Clin. 2017;16:234–239. Published 2017 Jul 24. https://doi.org/10.1016/j.nicl.2017.07.019.

  61. Oertel M, Boscardin WJ, Obrist WD, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg. 2005;103:812–24.

    Article  PubMed  Google Scholar 

  62. Bailey DM, Jones DW, Sinnott A, et al. Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clin Sci (Lond). 2013;124:177–89.

    Article  CAS  PubMed  Google Scholar 

  63. Zweifel C, Castellani G, Czosnyka M, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.

    Article  PubMed  Google Scholar 

  64. Kenney K, Amyot F, Haber M, et al. Cerebral vascular injury in traumatic brain injury. Exp Neurol. 2016;275(Pt 3):353–66.

    Article  PubMed  Google Scholar 

  65. Diaz-Arrastia R, Amyot F, Haber M, Moore C, Kenney K. “From chronic traumatic encephalopathy biomarkers to clinical trials: what we need to know to design clinical trials.” In: Budson AE, Cantu RC, McKee AC, Stern RA, eds. Chronic traumatic encephalopathy: proceedings of the Boston University Alzheimer’s Disease Center Conference. Philadelphia: Elsevier; 2018:155-

  66. Rodriguez Merzagora AC, Izzetoglu M, Onaral B, Schultheis MT. Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging Behav. 2014;8:446–59.

    Article  PubMed  Google Scholar 

  67. Pifarre P, Prado J, Giralt M, Molinero A, Hidalgo J, Garcia A. Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory response, reduces oxidative stress and cell death and increases angiogenesis following focal brain injury. J Neurochem. 2010;112:807–17.

    Article  CAS  PubMed  Google Scholar 

  68. Turner EL, Perel P, Clayton T, et al. Covariate adjustment increased power in randomized controlled trials: an example in traumatic brain injury. J Clin Epidemiol. 2012;65:474–81.

    Article  PubMed  Google Scholar 

  69. Boolell M, Gepi-Attee S, Gingell JC, Allen MJ. Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br J Urol. 1996;78:257–61.

    Article  CAS  PubMed  Google Scholar 

  70. Galie N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353:2148–57.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang R, Wang Y, Zhang L, et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002;33:2675–80.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang RL, Chopp M, Roberts C, et al. Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse. PLoS ONE. 2012;7: e48141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kilicarslan B, Kilicarslan E, Kizmazoglu C, Aydin HE, Kaya I, Danyeli AE, Karabekir HS. Evaluation of the efficacy of sildenafil citrate following severe head trauma in an experimental rat model. Turk Neurosurg. 2019;30:501–6. https://doi.org/10.5137/1019-5149.JTN.23864-18.3.

    Article  Google Scholar 

  74. Atalay B, Caner H, Cekinmez M, Ozen O, Celasun B, Altinors N. Systemic administration of phosphodiesterase V inhibitor, sildenafil citrate, for attenuation of cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery. 2006;59:1102–7.

    Article  PubMed  Google Scholar 

  75. Puzzo D, Staniszewski A, Deng SX, et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci. 2009;29:8075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang L, Chopp M, Szalad A, Jia L, Lu X, Lu M, Zhang L, Zhang Y, Zhang R, Zhang ZG. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice. PLoS One. 2015 Feb 17;10(2):e0118134. https://doi.org/10.1371/journal.pone.0118134. PMID: 25689401; PMCID: PMC4331563.

  77. Hackett G. PDE5 inhibitors in diabetic peripheral neuropathy. Int J Clin Pract. 2006;60(9):1123–6. https://doi.org/10.1111/j.1742-1241.2006.01087.x. (PMID: 16939556).

    Article  CAS  PubMed  Google Scholar 

  78. Mandosi E, Giannetta E, Filardi T, Lococo M, Bertolini C, Fallarino M, Gianfrilli D, Venneri MA, Lenti L, Lenzi A, Morano S. Endothelial dysfunction markers as a therapeutic target for sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin Ther Targets. 2015;19(12):1617–22. https://doi.org/10.1517/14728222.2015.1066337. (Epub 2015 Jul 15 PMID: 26178526).

    Article  CAS  PubMed  Google Scholar 

  79. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov. 2006;5:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dhar R, Washington C, Diringer M, Zazulia A, Jafri H, Derdeyn C, Zipfel G. Acute Effect of Intravenous sildenafil on cerebral blood flow in patients with vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2016;25(2):201–4. https://doi.org/10.1007/s12028-016-0243-0.PMID:26940913;PMCID:PMC5010798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Washington CW, Derdeyn CP, Dhar R, Arias EJ, Chicoine MR, Cross DT, Dacey RG Jr, Han BH, Moran CJ, Rich KM, Vellimana AK, Zipfel GJ. A phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 2016 Feb;124(2):318–27. https://doi.org/10.3171/2015.2.JNS142752. Epub 2015 Aug 28. PMID: 26314998; PMCID: PMC8157481.

  82. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N. Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2013;33(2):311–8. https://doi.org/10.1038/jcbfm.2012.176.

    Article  CAS  PubMed  Google Scholar 

  83. Diomedi M, Sallustio F, Rizzato B, et al. Sildenafil increases cerebrovascular reactivity: a transcranial Doppler study. Neurology. 2005;65:919–21.

    Article  CAS  PubMed  Google Scholar 

  84. Rosengarten B, Schermuly RT, Voswinckel R, et al. Sildenafil improves dynamic vascular function in the brain: studies in patients with pulmonary hypertension. Cerebrovasc Dis. 2006;21:194–200.

    Article  CAS  PubMed  Google Scholar 

  85. Bozgeyik Z, Berilgen S, Ozdemir H, Tekatas A, Ogur E. Evaluation of the effects of sildenafil citrate (viagra) on vertebral artery blood flow in patients with vertebro-basilar insufficiency. Korean J Radiol. 2008;9:477–80.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kruuse C, Thomsen LL, Jacobsen TB, Olesen J. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J Cereb Blood Flow Metab. 2002;22:1124–31.

    Article  CAS  PubMed  Google Scholar 

  87. Kruuse C, Hansen AE, Larsson HB, Lauritzen M, Rostrup E. Cerebral haemodynamic response or excitability is not affected by sildenafil. J Cereb Blood Flow Metab. 2009;29:830–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from the US Army Medical Research and Development Command (USAMRDC)’s Fiscal Year 2021 Clinical Trial Award from the TBI and Psychological Health Research Program (TBIPHRP) TP210611 (W81XWH-22-C-0139).

Funding

We would also like to acknowledge prior funding from the Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Kalyani.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyani, P., Lippa, S.M., Werner, J.K. et al. Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury. Neurotherapeutics 20, 1629–1640 (2023). https://doi.org/10.1007/s13311-023-01430-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01430-z

Keywords

Navigation