Skip to main content

Advertisement

Log in

Molybdate incorporated α-Ni(OH)2: potential catalyst for oxidation of Iso-eugenol and anisole hydrotreating

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The molybdate-incorporated hydrotalcite-type α-Ni(OH)2 catalysts were prepared by the post-synthesis method. The synthesized catalyst was thoroughly studied using several physicochemical characterization methods. The catalytic activity of the material was studied on biomass model compounds such as anisole hydrotreating and the oxidation of iso-eugenol. The catalyst shows a significant conversion for the anisole hydrotreating in vapour phase conditions, yielding a steady-state conversion of 30% even after 10 h of time-on-stream (TOS). The primary product was benzene, with other products, viz., methyl anisole, methylcyclohexane, and toluene, as minor components. The catalyst also has the potential for iso-eugenol oxidation and shows 76.1% conversion with 75.5% selectivity for vanillin at 100 °C, 5 h.

Graphical abstract

Molybdate-incorporated hydrotalcite-type α-Ni(OH)2 catalysts have the potential for oxidation of iso-eugenol to vanillin in the presence of an oxidant in a liquid phase and hydro-deoxygenation in the vapour phase under a hydrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Khromova S A, Smirnov A A, Bulavchenko O A, Saraev A A, Kaichev V V, Reshetnikov S I and Yakovlev V A 2014 Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity Appl. Catal. A-Gen. 470 261

    Article  CAS  Google Scholar 

  2. Gandarias I and Arias P L 2013 In Liquid, Gaseous and Solid Biofuels: Conversion Techniques Zhen Fang (Ed.) (London: InTech)

  3. Ralph J, Lapierre C and Boerjan W 2019 Lignin structure and its engineering Curr. Opin. Biotechnol. 56 240

    Article  CAS  PubMed  Google Scholar 

  4. Chio C, Sain M and Qin W 2019 Lignin utilization: A review of lignin depolymerization from various aspects Renew. Sustain. Energy Rev. 107 232

    Article  CAS  Google Scholar 

  5. Dignum M J, Kerler J and Verpoorte R 2002 Vanilla curing under laboratory conditions Food Chem. 79 165

    Article  CAS  Google Scholar 

  6. Franco A, De S, Balu A M, Garcia A and Luque R 2017 Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of iso-eugenol to vanillin Beil. J. Org. Chem. 13 1439

    Article  CAS  Google Scholar 

  7. Poonpiriya T, Sawaengkit P, Churnjitapirom P and Thaweboon S 2021 Water sorption and solubility of vanillin-incorporated self-curing orthodontic polymethylmethacrylate resin Matter. Sci. Form. 1020 187

    Article  Google Scholar 

  8. Franco A, De S, Balu A M, Romero A A and Luque R 2017 Selective oxidation of isoeugenol to vanillin over mechanochemically synthesized aluminosilicate supported transition metal catalysts Chem. Select 2 9546

    CAS  Google Scholar 

  9. Martău G A, Călinoiu L F and Vodnar D C 2021 Bio-vanillin: Towards a sustainable industrial production Trends Food Sci. Technol. 109 579

    Article  Google Scholar 

  10. Gallage N J, Hansen E H, Kannangara R, Olsen C E, Motawia M S, Jørgensen K and Møller BL 2014 Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme Nat. Commun. 5 4037

    Article  CAS  PubMed  Google Scholar 

  11. Tan Q, Wang G, Long A, Dinse A, Buda C, Shabaker J and Resasco D E 2017 Mechanistic analysis of the role of metal oxophilicity in the hydrodeoxygenation of anisole J. Catal. 347 102

    Article  CAS  Google Scholar 

  12. Lenka S and Badamali S K 2023 Nanostructured ZnO as efficient heterogeneous photo catalyst towards degradation of lignin under visible light irradiation Mol. Catal. 536

  13. Saidi M and Moradi P 2021 Catalytic hydrotreatment of lignin-derived pyrolysis bio-oils using Cu/γ-Al2O3 catalyst: Reaction network development and kinetic study of anisole upgrading Int. J. Energy Res. 45 8267

    Article  Google Scholar 

  14. Li W, Li F and Wang H 2020 Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane Mol. Catal. 480

  15. Schmal M, Lima RW, Hewer T L and Alves R 2023 Hydrodeoxygenation (HDO+ HDA) of guaiacol, anisole and a mixture on Ni-Mo catalysts supported on SBA-15 and γ-Al2O3 Braz. J. Chem. Eng. https://doi.org/10.1007/s43153-023-00344-9

    Article  Google Scholar 

  16. Zhang X, Chen X, Jin S, Peng Z and Liang C 2016 Ni/Al2O3 catalysts derived from layered double hydroxide and their applications in hydrodeoxygenation of anisole Chem. Select 1 577

    CAS  Google Scholar 

  17. Mäki-Arvela P and Murzin D Y 2017 Hydrodeoxygenation of lignin-derived phenols: From fundamental studies towards industrial applications Catalysts 7 265

    Article  Google Scholar 

  18. Gómez Millán G, Hellsten S, Llorca J, Luque R, Sixta H and Balu A M 2019 Recent advances in the catalytic production of platform chemicals from holocellulosic biomass Chem. Cat Chem. 11 2022

    Google Scholar 

  19. Kamm B 2007 Production of platform chemicals and synthesis gas from biomass Angew. Chem. Int. Ed. Engl. 46 5056

    Article  CAS  PubMed  Google Scholar 

  20. Albertazzi S, Baraldini I, Busca G, Finocchio E, Lenarda M, Storaro L and Vaccari A 2005 Noble metal containing Al/Ce/Mg pillared montmorillonite clay as catalysts in the hydrotreating of LCO fractions Appl. Clay Sci. 29 224

    Article  CAS  Google Scholar 

  21. Ardiyanti A R, Khromova S A, Venderbosch R H, Yakovlev V A, Melián-Cabrera I V and Heeres H J 2012 Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni–Cu catalysts on various supports Appl. Catal. A-Gen. 449 121

    Article  CAS  Google Scholar 

  22. Kim G, Seo J, Choi J W, Jae J, Ha J M, Suh D J and Kim J K 2018 Two-step continuous upgrading of sawdust pyrolysis oil to deoxygenated hydrocarbons using hydrotreating and hydrodeoxygenating catalysts Catal. Today 303 130

    Article  CAS  Google Scholar 

  23. Ashokraju M, Mohan V, Murali K, Rao M V, Raju B D and Rao K S R 2018 Formic acid assisted hydrogenation of levulinic acid to γ-valerolactone over ordered mesoporous Cu/Fe2O3catalyst prepared by hard template method J. Chem. Sci. 130 https://doi.org/10.1007/s12039-018-1418-3.

  24. Badoga S, Sharma R V, Dalai A K and Adjaye J 2014 Hydrotreating of Heavy Gas oil on mesoporous mixed metal oxides (M–Al2O3, M= TiO2, ZrO2, SnO2) supported NiMo catalysts: Influence of surface acidity Ind. Eng. Chem. Res. 53 18729

    Article  CAS  Google Scholar 

  25. Breysse M, Afanasiev P, Geantet C and Vrinat M 2003 Overview of support effects in hydrotreating catalysts Catal. Today 86 5

    Article  CAS  Google Scholar 

  26. Védrine J C 2019 Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world ChemSusChem. 12 577

    Article  PubMed  Google Scholar 

  27. Nagaiah P, Pramod C V, Rao M V, Raju B D and Rao K R 2018 Liquid phase hydrogenation of furfural using 2-propanol over ZrO2 J. Chem. Sci. 130 https://doi.org/10.1007/s12039-018-1469-5

  28. Gagnon J and Kaliaguine S 1988 Catalytic hydrotreatment of vacuum pyrolysis oils from wood Ind. Eng. Chem. Res. 271 783

    Google Scholar 

  29. Vaccari A 1999 Clays and catalysis: a promising future Appl. Clay Sci. 14 161

    Article  CAS  Google Scholar 

  30. Baskaran T, Christopher J and Sakthivel A 2015 Progress on layered hydrotalcite (HT) materials as potential support and catalytic materials RSC Adv. 5 98853

  31. Li M, Wang X, Li S, Wang S and Ma X 2010 Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds Int. J. Hydrog. Energy 35 6699

    Article  CAS  Google Scholar 

  32. Tong G X, Liu F T, Wu W H, Shen J P, Hu X and Liang Y 2012 Polymorphous α-and β-Ni(OH)2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors CrystEngComm 14 5963

  33. Jeevanandam P, Koltypin Y and Gedanken A 2001 Synthesis of nanosized α-nickel hydroxide by a sonochemical method Nano Lett. 1 263

    Article  CAS  Google Scholar 

  34. De S, Zhang J, Luque R and Yan N 2016 Ni-based bimetallic heterogeneous catalysts for energy and environmental applications Energy Environ. Sci. 9 3314

    Article  CAS  Google Scholar 

  35. Sreenavya A, Aswin P, Ganesh V, Venkatesha N J and Sakthivel A 2022 Facile water-free synthesis of noble metal-containing hydrotalcites-derived materials and their application for hydrotreatment of anisole Mater. Today Sustain. 18 https://doi.org/10.1016/j.mtsust.2022.100153

  36. Sreenavya A, Ahammed S, Ramachandran A, Ganesh V and Sakthivel A 2022 Nickel–ruthenium bimetallic species on hydrotalcite support: a potential hydrogenation catalyst Catal. Lett. 152 48

    Article  Google Scholar 

  37. Neethu P P, Aswin P, Sreenavya A, Nimisha S, Aswathi P S and Sakthivel A 2022 Ruthenium on α-Ni(OH)2 as potential catalyst for anisole hydrotreating and cinnamyl alcohol oxidation React. Kinet. Mech. Catal. 135 1587

    Article  CAS  Google Scholar 

  38. Sreenavya A, Muhammed F and Sakthivel A 2021 Porous nickel oxide derived from Ni(OH)2: preparation, characterization, and catalytic applications Emerg. Mater. Res. 4 803

    Article  CAS  Google Scholar 

  39. Ruan L, Zhang H, Zhou M, Zhu L, Pei A, Wang J and Chen B H 2020 A highly selective and efficient Pd/Ni/Ni (OH)2/C catalyst for furfural hydrogenation at low temperatures Mol. Catal. 480 https://doi.org/10.1016/j.mcat.2019.110639.

  40. Ambursa M M, Ali T H, Lee H V, Sudarsanam P, Bhargava S K and Abd Hamid S B 2016 Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu–Ni catalysts supported on metal oxides Fuel 180 767

  41. Zhang X, Zhang Q, Wang T, Ma L, Yu Y and Chen L 2013 Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts Bioresour. Technol. 134 73

    Article  PubMed  Google Scholar 

  42. Bykova M V, Ermakov D Y, Khromova S A, Smirnov A A, Lebedev M Y and Yakovlev V A 2014 Stabilized Ni-based catalysts for bio-oil hydrotreatment: Reactivity studies using guaiacol Catal. Today 220 21

    Article  Google Scholar 

  43. Stamate A E, Pavel O D, Zavoianu R and Marcu I C 2020 Highlights on the catalytic properties of polyoxometalate-intercalated layered double hydroxides: A review Catalysts 10 57

  44. Carriazo D, Lima S, Martín C, Pillinger M, Valente A A and Rives V 2007 Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene J. Phys. Chem. Solids 68 1872

    Article  CAS  Google Scholar 

  45. Malherbe F, Depege C, Forano C, Besse J P, Atkins M P, Sharma B and Wade S R 1998 Alkoxylation reaction catalysed by layered double hydroxides Appl. Clay Sci. 13 451

    Article  CAS  Google Scholar 

  46. Otyuskaya D, Thybaut J W, Lødeng R and Marin G B 2017 Anisole hydrotreatment kinetics on CoMo catalyst in the absence of sulfur: experimental investigation and model construction Energy Fuels 31 7082

    Article  CAS  Google Scholar 

  47. Chihaia V, Sohlberg K, Zăvoianu R, Cruceanu A, Pavel O D, Angelescu E and Bîrjega R 2012 Oxidation of tert-butanethiol with air using Mo-containing hydrotalcite-like compounds and their derived mixed oxides as catalysts React. Kinet. Mech. Catal. 105 145

    Article  Google Scholar 

  48. Thao N T, Trung N D and Van Long D 2016 Activity of molybdate-intercalated layered double hydroxides in the oxidation of styrene with air Catal. Lett. 146 918

    Article  Google Scholar 

  49. Mitchell P C H and Wass S A 2002 Propane dehydrogenation over molybdenum hydrotalcite catalysts Appl. Catal. A-Gen. 225 153

    Article  CAS  Google Scholar 

  50. Neethu P P, Sreenavya A and Sakthivel A 2021 Molybdate stabilized magnesium‐iron hydrotalcite materials: potential catalysts for iso-eugenol to vanillin and olefin epoxidation Appl. Catal. A-Gen. 623 https://doi.org/10.1016/j.apcata.2021.118292

  51. Saidi M, Rahzani B and Rahimpour M R 2017 Characterization and catalytic properties of molybdenum supported on nano gamma Al2O3 for upgrading of anisole model compound J. Chem. Eng. 319 143

    Article  CAS  Google Scholar 

  52. Bhavisha M, Aswani S, Sreenavya A, Neethu P P, Archana I G, Balamurugan S and Sakthivel A 2023 Molybdenum incorporated strontium‐iron and strontium‐cobalt (SrBMoO3−δ; B= Fe & Co) perovskites: preparation and their application on oxidation of iso‐Eugenol into vanillin Eur. J. Inorg. Chem. 26 https://doi.org/10.1002/ejic.202200590.

  53. Neethu P P and Sakthivel A 2022 Esterification of biomass-derived levulinic acid using molybdate-intercalated hydrotalcite materials New J. Chem. 46 19301

    Article  CAS  Google Scholar 

  54. Prasomsri T, Shetty M, Murugappan K and Román-Leshkov Y 2014 Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures Energy Environ. Sci. 7 2660

    Article  CAS  Google Scholar 

  55. Wang H, Diao Y, Gao Z, Smith K J, Guo X, Ma D and Shi C 2022 H2 Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development ACS Catal. 12 15501

  56. Kaewpanha M, Guan G, Ma Y, Hao X, Zhang Z, Reubroychareon P and Abudula A 2015 Hydrogen production by steam reforming of biomass tar over biomass char supported molybdenum carbide catalyst Int. J. Hydrog. Energy. 40 7974

    Article  CAS  Google Scholar 

  57. Iwasawa Y and Ogasowara S 1979 Spectroscopic study on the surface structure and environment of fixed Mo catalysts prepared by use of Mo(π-C3H5)4 J. Chem. Soc. Faraday Trans. I 75 1465

    Article  CAS  Google Scholar 

  58. Jia M, Seifert A and Thiel W R 2003 Mesoporous MCM-41 materials modified with oxodiperoxo molybdenum complexes: efficient catalysts for the epoxidation of cyclooctene Chem. Mater. 15 2174

    Article  CAS  Google Scholar 

  59. Sreenavya A, Baskaran T, Ganesh V, Sharma D, Kulal N and Sakthivel A 2018 Framework of ruthenium-containing nickel hydrotalcite-type material: preparation, characterisation, and its catalytic application RSC Adv. 8 25248

  60. Sreenavya A, Sahu A and Sakthivel A 2020 Hydrogenation of lignin-derived phenolic compound eugenol over ruthenium-containing nickel hydrotalcite-type materials Ind. Eng. Chem. Res. 59 11979

    Article  CAS  Google Scholar 

  61. Liu Z and Chen Y 1998 Spectroscopic studies on tetragonal ZrO2-supported MoO3 and NiO− MoO3 systems J. Catal. 177 314

    Article  CAS  Google Scholar 

  62. Bafti A, Razum M, Topić E, Agustin D, Pisk J and Vrdoljak V 2021 Implication of oxidant activation on olefin epoxidation catalysed by Molybdenum catalysts with aroylhydrazonato ligands: Experimental and theoretical studies Mol. Catal. 512 https://doi.org/10.1016/j.mcat.2021.111764.

  63. Zhao J, Sakthivel A, Santos A M and Kuhn F E 2005 Siloxane functionalized cyclopentadienyl-molybdenum complexes: Synthesis, Characterization and catalytic application Inorg. Chem. Acta 358 4201

    Article  CAS  Google Scholar 

  64. Aswin P, Sreenavya A, Venkatesha N J, Ganesh V, Balamurugan S and Sakthivel A 2022 Hydrodeoxygenation of Anisole by Using a Ruthenium‐Containing Nickel‐Iron Hydrotalcite‐Based Catalyst Chem. Select 7 https://doi.org/10.1002/slct.202202523.

Download references

Acknowledgements

The author thanks DST-SERB-CRG for financial support. Dr. Soumya B. Narendranath acknowledges KSHEC, Govt. of Kerala, for financial assistance (KSHEC-A3/344/Govt. Kerala-NKPDF/2022). Aswin P acknowledges E-grants, Govt. of Kerala, for financial assistance. The authors thank the Material Analysis and Research Centre, Bengaluru Institute of Technology, Bengaluru, for the surface area analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sakthivel.

Ethics declarations

Competing interest

The authors declare no conflicts of interest

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswin, P., Narendranath, S.B., Unni, A. et al. Molybdate incorporated α-Ni(OH)2: potential catalyst for oxidation of Iso-eugenol and anisole hydrotreating. J Chem Sci 135, 99 (2023). https://doi.org/10.1007/s12039-023-02218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02218-6

Keywords

Navigation