Skip to main content
Log in

Global precipitation change during the Holocene: a combination of records and simulations

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Precipitation can shape our climate both in the present and the future. Even though we have made significant advances in studying the mechanisms of millennial-scale climate changes through high-resolution records, we still cannot quantitatively characterize the global spatiotemporal precipitation variations within the Holocene. Therefore, we developed a new approach to integrating data from 349 globally distributed records and climate models to reconstruct regional and global precipitation patterns over the last 12000 years. Our results reveal that precipitation reconstructions can be divided into monsoon-driven and westerly driven patterns. The results suggest that an arid climate was experienced in the late glacial and early Holocene epoch (∼12–7.4 cal ka BP), attaining a middle Holocene optimum (∼7.4–3.5 cal ka BP), and drier after the middle Holocene. According to our reconstructions, the global precipitation reconstruction increased from the early Holocene until 3.8 cal ka BP and then subsequently decreased. In addition, our reconstructions better reproduce the low-frequency events and extreme precipitation at the millennial scale in the hemispheres, but the performance of the reconstructions in the equatorial Pacific and the Southern Hemisphere of Africa and the Americas is controversial. The resolution of the record and the simulation capability of the climate model remain important means to improve our understanding of past climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram N J, Mcgregor H V, Tierney J E, Evans M N, Mckay N P, Kaufman D S, Thirumalai K, Martrat B, Goosse H, Phipps S J, Steig E J, Kilbourne K H, Saenger C P, Zinke J, Leduc G, Addison J A, Mortyn P G, Seidenkrantz M, Sicre M, Selvaraj K, Filipsson H L, Neukom R, Gergis J, Curran M A J, Gunten L V (2016). Early onset of industrial-era warming across the oceans and continents. Nature, 536(7617): 411–418

    Article  Google Scholar 

  • Adam O, Schneider T, Enzel Y, Quade J (2019). Both differential and equatorial heating contributed to African monsoon variations during the mid-Holocene. Earth Planet Sci Lett, 522: 20–29

    Article  Google Scholar 

  • An C B, Chen F H, Barton L (2008). Holocene environmental changes in Mongolia: a review. Global Planet Change, 63(4): 283–289

    Article  Google Scholar 

  • Asmerom Y, Polyak V J, Burns S J (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat Geosci, 3(2): 114–117

    Article  Google Scholar 

  • Ault T R, Cole J E, Overpeck J T, Pederson G T, Meko D M (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J Clim, 27(20): 7529–7549

    Article  Google Scholar 

  • Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003). Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta, 67(17): 3181–3199

    Article  Google Scholar 

  • Berke M A, Johnson T C, Werne J P, Grice K, Schouten S, Damste J (2012). Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quat Sci Rev, 55: 59–74

    Article  Google Scholar 

  • Boch R, Spötl C, Kramers J (2009). High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat Sci Rev, 28(23): 2527–2538

    Article  Google Scholar 

  • Bonnefille R, Chalie F (2000). Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change, 26(1–3): 25–50

    Article  Google Scholar 

  • Bouchette F, Schuster M, Ghienne J F, Denamiel C, Roquin C, Moussa A, Marsaleix P, Duringer P (2010). Hydrodynamics in Holocene Lake Mega-Chad. Quat Res, 73(2): 226–236

    Article  Google Scholar 

  • Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291(1–4): 21–31

    Article  Google Scholar 

  • Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W (2010). Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev, 29(7–8): 1055–1068

    Article  Google Scholar 

  • Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16(5): 675–684

    Article  Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27(3–4): 351–364

    Article  Google Scholar 

  • Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S (2019). Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth Sci Rev, 192: 337–354

    Article  Google Scholar 

  • Constantin S, Bojar A, Lauritzen S, Lundberg J (2007). Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr, Palaeoclimatol, Palaeoecol, 243(3): 322–338

    Article  Google Scholar 

  • Cosford J, Qing H, Mattey D, Eglington B, Zhang M (2009). Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 280(1): 235–244

    Article  Google Scholar 

  • Cosford J, Qing H, Yuan D, Zhang M, Holmden C, Patterson W, Hai C (2008). Millennial-scale variability in the Asian monsoon: evidence from oxygen isotope records from stalagmites in southeastern China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 266(1): 3–12

    Article  Google Scholar 

  • Costa K M, Russell J M, Vogel H, Bijaksana S (2015). Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr Palaeoclimatol Palaeoecol, 417: 467–475

    Article  Google Scholar 

  • Cruz F W, Burns S J, Karmann I, Sharp W D, Vuille M, Cardoso A O, Ferrari J A, Silva Dias P L, Viana O (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434(7029): 63–66

    Article  Google Scholar 

  • Dean W, Rosenbaum J, Skipp G, Colman S, Forester R, Liu A, Simmons K, Bischoff J (2006). Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA. Sediment Geol, 185: 93–112

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev, 19(1–5): 347–361

    Article  Google Scholar 

  • Denniston R F, González L A, Asmerom Y, Baker RG, Reagan MK, Bettis EAI (1999a). Evidence for increased cool season moisture during the middle Holocene. Geology, 27(9): 815–818

    Article  Google Scholar 

  • Denniston R F, González L A, Baker R G, Asmerom Y, Reagan M K, Edwards R L, Alexander E C (1999b). Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, north-central USA. The Holocene, 9(6): 671–676

    Article  Google Scholar 

  • Dong J G, Wang Y J, Cheng H, Hardt B, Edwards R L, Kong X G, Wu J Y, Chen S T, Liu D B, Jiang X Y, Zhao K (2010). A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. Holocene, 20(2): 257–264

    Article  Google Scholar 

  • Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A E, Pickett M, Cartwright I, Piccini L (2006). Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian flowstone. Geology, 34: 101–104

    Article  Google Scholar 

  • Duan F, Wang Y, Shen C C, Wang Y, Cheng H, Wu C C, Hu H M, Kong X, Liu D, Zhao K (2014). Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China. Sci Rep, 4(1): 5159

    Article  Google Scholar 

  • Dykoski C A, Edwards R L, Cheng H, Yuan D X, Cai Y J, Zhang M L, Lin Y S, Qing J M, An Z S, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1–2): 71–86

    Article  Google Scholar 

  • Filippov A, Riedel F (2009). The late Holocene mollusc fauna of the Aral Sea and its biogeographical and ecological interpretation. Limnologica, 39(1): 67–85

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev, 26(1): 170–188

    Article  Google Scholar 

  • Fleitmann D, Cheng H, Braun-Badertscher S, Edwards R, Mudelsee M, Göktürk OM, Fankhauser A, Pickering R, Raible C, Matter A, Kramers J, Tuysuz O (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett, 36

  • Fornace K L, Hughen K A, Shanahan T M, Fritz S C, Baker P A, Sylva S P (2014). A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth Planet Sci Lett, 408: 263–271

    Article  Google Scholar 

  • Fritz S C, Baker P A, Tapia P, Garland J (2006). Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000yrs. Quat Int, 158(1): 23–29

    Article  Google Scholar 

  • Frumkin A, Ford DC, Schwarcz HP (1999). Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat Res, 51(3): 317–372

    Article  Google Scholar 

  • Gagen M H, Zorita E, McCarroll D, Zahn M, Young G H F, Robertson I (2016). North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat Geosci, 9: 630–625

    Article  Google Scholar 

  • Găinuşă-Bogdan A, Swingedouw D, Yiou P, Cattiaux J, Codron F, Michel S (2020). AMOC and summer sea ice as key drivers of the spread in mid-holocene winter temperature patterns over Europe in PMIP3 models. Global Planet Change, 184: 103055

    Article  Google Scholar 

  • Gasse F (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev, 19(1–5): 189–211

    Article  Google Scholar 

  • Govindan R B, Vyushin D, Bunde A, Brenner S, Havlin S, Schellnhuber H J (2002). Global climate models violate scaling of the observed atmospheric variability. Phys Rev Lett, 89(2): 028501

    Article  Google Scholar 

  • Griffiths M L, Drysdale R N, Gagan M K, Zhao J X, Ayliffe L K, Hellstrom J C, Hantoro W S, Frisia S, Feng Y X, Cartwright I, Pierre E S, Fischer M J, Suwargadi B W (2009). Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat Geosci, 2(9): 636–639

    Article  Google Scholar 

  • Grootes P M, Stuiver M (1997). Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. J Geophys Res, 102(C12): 26455–26470

    Article  Google Scholar 

  • Hardt B, Rowe H D, Springer G S, Cheng H, Edwards R L (2010). The seasonality of east central North American precipitation based on three coeval Holocene speleothems from southern West Virginia. Earth Planet Sci Lett, 295(3–4): 342–348

    Article  Google Scholar 

  • Hardy D R, Vuille M, Bradley R S (2003). Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. J Geophys Res-Atmosph, 108(D22): 2003JD003623

    Article  Google Scholar 

  • Haug G H, Hughen K A, Sigman D M, Peterson L C, Röhl U (2001). Southward migration of the intertropical convergence zone through the Holocene. Science, 293(5533): 1304–1308

    Article  Google Scholar 

  • Heikkilä M, Edwards TW D, Seppä H, Sonninen E (2010). Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology. Quat Sci Rev, 29(17–18): 2146–2160

    Article  Google Scholar 

  • Hodell D, Curtis J, Brenner M (1995). Possible Role of Climate in the Collapse of Classic Maya Civilization. Nature, 375: 391–394

    Article  Google Scholar 

  • Holmgren K, Lee-Thorp J A, Cooper G R J, Lundblad K, Partridge T C, Scott L, Sithaldeen R, Talma A S, Tyson P D (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat Sci Rev, 22(21–22): 2311–2326

    Article  Google Scholar 

  • Hopcroft P O, Valdes P J, Harper A B, Beerling D J (2017). Multi vegetation model evaluation of the Green Sahara climate regime. Geophys Res Lett, 44(13): 6804–6813

    Article  Google Scholar 

  • Hu C, Henderson G, Huang J, Zhenghong C, Kathleen J (2008). Report of a three-year monitoring programme at Heshang Cave, Central China. Int J Speleol, 37

  • Ji J, Shen J, Balsam W, Chen J, Liu L, Liu X (2005). Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett, 233(1): 61–70

    Article  Google Scholar 

  • Jia Y H, Li D W, Yu M, Zhao X C, Xiang R, Li G X, Zhang H L, Zhao M X (2019). High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene. Global Planet Change, 182: 103025

    Article  Google Scholar 

  • Johnson T C, Brown E T, McManus J, Barry S, Barker P, Gasse F (2002). A high-resolution paleoclimate record spanning the past 25000 Years in southern East Africa. Science, 296(5565): 113–132

    Article  Google Scholar 

  • Kaufman A, Bar-Matthews M, Ayalon A, Carmi I (2003). The vadose flow above Soreq Cave, Israel: a tritium study of the cave waters. J Hydrol (Amst), 273(1): 155–163

    Article  Google Scholar 

  • Lachniet M S, Asmerom Y, Burns S J, Patterson W P, Polyak V J, Seltzer G O (2004). Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology, 32(11): 957–960

    Article  Google Scholar 

  • Lachniet MS, Johnson L, Asmerom Y, Burns SJ, Polyak V, Patterson WP, Burt L, Azouz A (2009). Late Quaternary moisture export across Central America and to Greenland: evidence for tropical rainfall variability from Costa Rican stalagmites. Quat Sci Rev, 28(27): 3348–3360

    Article  Google Scholar 

  • Laepple T, Huybers P (2014). Ocean surface temperature variability: large model-data differences at decadal and longer periods. Proc Natl Acad Sci USA, 111(47): 16682–16687

    Article  Google Scholar 

  • Lea D W, Pak D K, Spero H J (2000). Climate impact of late Quaternary equatorial pacific sea surface temperature variations. Science, 289(5485): 1719–1724

    Article  Google Scholar 

  • LeGrande A N, Schmidt G A (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim Past, 5(3): 441–455

    Article  Google Scholar 

  • Li Y, Wang N, Cheng H, Long H, Zhao Q (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas, 38(2): 349–361

    Article  Google Scholar 

  • Li Y, Wang N, Zhou X, Zhang C, Wang Y (2014). Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices. Global Planet Change, 116(5): 30–40

    Article  Google Scholar 

  • Li Y, Xu L M (2016). Asynchronous Holocene Asian monsoon vapor transport and precipitation. Palaeogeogr Palaeoclimatol Palaeoecol, 461: 195–200

    Article  Google Scholar 

  • Li Y, Xu L, Zhang C, Liu Y, Zhu G, Zhou X (2018). Temporal and spatial evolution of Holocene vegetation and lake hydrological status, China. Holocene, 28(5): 706–720

    Article  Google Scholar 

  • Magee J W, Miller G H, Spooner N A, Questiaux D (2004). Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure. Geology, 32(10): 885–888

    Article  Google Scholar 

  • Majewski J M, Switzer A D, Meltzner A J, Parham P R, Horton B P, Bradley S L, Pile J, Chiang H W, Wang X F, Ng C T, Tanzil J, Muller M, Mujahid A (2018). Holocene relative sea-level records from coral microatolls in Western Borneo, South China Sea. Holocene, 28(9): 1431–1442

    Article  Google Scholar 

  • McGee D (2020). Glacial-interglacial precipitation changes. Annu Rev Mar Sci, 12(1): 525–557

    Article  Google Scholar 

  • Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411(6835): 290–293

    Article  Google Scholar 

  • Oviatt CG, Madsen DB, Miller DM, Thompson RS, McGeehin JP (2015). Early Holocene Great Salt Lake, USA. Quat Res, 84(1): 57–68

    Article  Google Scholar 

  • Parsons L A, Loope G R, Overpeck J T, Ault T R, Stouffer R, Cole J E (2017). Temperature and precipitation variance in CMIP5 simulations and paleoclimate records of the Last Millennium. J Clim, 30(22): 8885–8912

    Article  Google Scholar 

  • Partin J W, Cobb K M, Adkins J F, Clark B, Fernandez D P (2007). Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature, 449(7161): 452–455

    Article  Google Scholar 

  • Pausata F S R, Zhang Q, Muschitiello F, Lu Z, Chafik L, Niedermeyer E M, Stager J C, Cobb K M, Liu Z (2017). Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat Commun, 8(1): 16020

    Article  Google Scholar 

  • Repinski P, Holmgren K, Lauritzen S E, Lee-Thorp J A (1999). A late Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr, Palaeoclimatol, Palaeoecol, 150(3): 269–277

    Article  Google Scholar 

  • Ricketts R D, Johnson T C, Brown E T, Rasmussen K A, Romanovsky V V (2001). The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr, Palaeoclimatol, Palaeoecol, 176(1): 207–227

    Article  Google Scholar 

  • Schewe J, Levermann A (2017). Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming. Earth Syst Dyn, 8(3): 495–505

    Article  Google Scholar 

  • Scott L (1999). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quat Int, 57–58: 215–223

    Article  Google Scholar 

  • Shakun JD, Burns SJ, Fleitmann D, Kramers J, Matter A, Al-Subary A (2007). A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet Sci Lett, 259(3): 442–456

    Article  Google Scholar 

  • Shaw P A, Bateman M D, Thomas D S G, Davies F (2003). Holocene fluctuations of Lake Ngami, Middle Kalahari: chronology and responses to climatic change. Quat Int, 111(1): 23–35

    Article  Google Scholar 

  • Shi J, Yan Q (2019). Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms. J Clim, 32(19): 6551–6569

    Article  Google Scholar 

  • Smagorinsky J (1963). General circulation experiments with the primitive equations. Mon Weather Rev, 91(3): 99–164

    Article  Google Scholar 

  • Springer G, Rowe H, Hardt B, Edwards R, Cheng H (2008). Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophys Res Lett, 35

  • Stansell N D, Rodbell D T, Licciardi J M, Sedlak C M, Schweinsberg A D, Huss E G, Delgado G M, Zimmerman S H, Finkel RC (2015). Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes. Geology, 43(8): 747–750

    Article  Google Scholar 

  • Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017a). Arctic Ocean sea ice cover during the penultimate glacial and the Last Interglacial. Nat Commun, 8(1): 373

    Article  Google Scholar 

  • Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S I (2017b). Holocene variability in sea ice cover, primary production, and Pacific-water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quaternary Sci, 32(3): 362–379

    Article  Google Scholar 

  • Stocker T F, Johnsen S J (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18(4): 1087

    Article  Google Scholar 

  • Tierney J E, Ummenhofer C C, deMenocal P B (2015). Past and future rainfall in the Horn of Africa. Sci Adv, 1(9): e1500682

    Article  Google Scholar 

  • Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS (2008). Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years. Science, 322(5899): 252–255

    Article  Google Scholar 

  • Vaks A, Bar-Matthews M, Ayalon A, Schilman B, Gilmour M, Hawkesworth CJ, Frumkin A, Kaufman A, Matthews A (2003). Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat Res, 59(2): 182–193

    Article  Google Scholar 

  • van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008). Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett, 275(1): 54–60

    Article  Google Scholar 

  • Vörösmarty C J, Green P, Salisbury J, Lammers R B (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477): 284–288

    Article  Google Scholar 

  • Wagner J D M, Cole J E, Beck J W, Patchett P J, Henderson G M, Barnett H R (2010). Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat Geosci, 3(2): 110–113

    Article  Google Scholar 

  • Wang X F, Auler A S, Edwards R L, Cheng H, Ito E, Wang Y J, Kong X G, Solheid M (2007). Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett, 34: L23701

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A (2001). A high - resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550): 2345–2348

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic Climate. Science, 308(5723): 854–857

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182): 1090–1093

    Article  Google Scholar 

  • Werne J P, Hollander D J, Lyons T W, Peterson L C (2000). Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography, 15(1): 19–29

    Article  Google Scholar 

  • Williams P W, Neil H L, Zhao J X (2010). Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implications. Int J Speleol, 39(2): 99–112

    Article  Google Scholar 

  • Xia Q, Zhao J, Collerson KD (2001). Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett, 194(1): 177–187

    Article  Google Scholar 

  • Xu D, Lu H, Wu N, Liu Z, Li T, Shen C, Wang L (2013). Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes. Proc Natl Acad Sci USA, 110(24): 9657–9662

    Article  Google Scholar 

  • Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F W, Liu J, Sigman D M, Peterson L C, Haug GH (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123): 74–77

    Article  Google Scholar 

  • Yang H, Johnson K R, Griffiths M L, Yoshimura K (2016). Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions. J Geophys Res Atmos, 121(14): 8410–8428

    Article  Google Scholar 

  • Yang W, Seager R, Cane M A, Lyon B. (2014). The East African long rains in observations and models. J Clim, 27(19): 7185–7202

    Article  Google Scholar 

  • Yang Y, Yuan D X, Cheng H, Zhang M L, Qin J M, Lin Y S, Zhu X Y, Edwards R L (2010). Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China. Sci China Earth Sci, 53(5): 633–641

    Article  Google Scholar 

  • Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale J A, An Z, Cai Y (2004). Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304(5670): 575–578

    Article  Google Scholar 

  • Zhu F, Emile-Geay J, McKay N P, Hakim G J, Khider D, Ault T R, Steig E J, Dee S, Kirchner J W (2019). Climate models can correctly simulate the continuum of global-average temperature variability. Proc Natl Acad Sci USA, 116(18): 8728–8733

    Article  Google Scholar 

  • Zwart J A, Sebestyen S D, Solomon C T, Jones S E (2017). The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events. Ecosystems, 20(5): 1000–1014

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 42077415); the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0202); the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100102); the 111 Project (BP0618001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Li, Y. Global precipitation change during the Holocene: a combination of records and simulations. Front. Earth Sci. (2023). https://doi.org/10.1007/s11707-022-1047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11707-022-1047-5

Navigation