Skip to main content
Log in

Rheological behavior and microstructure formation of Si/C anode slurries for Li-ion batteries

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this study, we systematically investigate the rheological behavior and microstructure formation of the anode slurries containing silicon (Si), carbon black (CB), and carboxymethyl cellulose (CMC) from the perspective of interactions between the constituent components, aiming to provide a fundamental understanding of the dispersion characteristics of Si-based anode slurries. The CMC adsorbs onto both particles (CB/Si) but has different effects on the inter-particle interactions (CB–CB and Si–Si). It stabilizes the CB particles through electro-steric interactions, whereas it agglomerates the Si particles through bridging interactions, in aqueous medium. In the meanwhile, the CMC selectively adsorbs onto CB particles among the two particles. Therefore, at a CMC content lower than the optimum graft density where CB particles are adsorbed and saturated by CMC, it acts as a dispersant in the slurries. However, at a higher content, the CMC that remains after adsorption on CB particles adsorbs onto Si particles and acts as a flocculant for the particles in the slurries. The origin of selective adsorption is understood in terms of the driving forces for adsorption and the surface energy analysis. We anticipate our findings provide a useful guideline for the Si slurry design in terms of its dispersion and contribute to the development of Si anode technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Wang B, Li X, Zhang X, Luo B, Zhang Y, Zhi L (2013) Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv Mater 25(26):3560–3565

    CAS  Google Scholar 

  2. Jia H, Zou L, Gao P, Cao X, Zhao W, He Y, Engelhard MH, Burton SD, Wang H, Ren X (2019) High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv Energy Mater 9(31):1900784

    Google Scholar 

  3. Kim KJ, Ahn KH (2023) Effects of sodium carboxymethyl cellulose and poly (acrylic acid) on the agglomeration behavior of aqueous silicon suspensions. Colloids Surf A Physicochem Eng Aspects 673:131801

    CAS  Google Scholar 

  4. Gao H, Xiao L, Plümel I, Xu G-L, Ren Y, Zuo X, Liu Y, Schulz C, Wiggers H, Amine K (2017) Parasitic reactions in nanosized silicon anodes for lithium-ion batteries. Nano Lett 17(3):1512–1519

    CAS  Google Scholar 

  5. Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7(10):A306

    CAS  Google Scholar 

  6. McDowell MT, Xia S, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480–494

    Google Scholar 

  7. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949–2954

    CAS  Google Scholar 

  8. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    CAS  Google Scholar 

  9. Kumar R, Tokranov A, Sheldon BW, Xiao X, Huang Z, Li C, Mueller T (2016) In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett 1(4):689–697

    CAS  Google Scholar 

  10. Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C, Liu G (2015) Dual-functional gum Arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185

    CAS  Google Scholar 

  11. Kim K, Park I, Ha S-Y, Kim Y, Woo M-H, Jeong M-H, Shin WC, Ue M, Hong SY, Choi N-S (2017) Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim Acta 225:358–368

    CAS  Google Scholar 

  12. Wang D, Zhou C, Cao B, Xu Y, Zhang D, Li A, Zhou J, Ma Z, Chen X, Song H (2020) One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater 24:312–318

    Google Scholar 

  13. Hozer L, Lee J-R, Chiang Y-M (1995) Reaction-infiltrated, net-shape SiC composites. Mater Sci Eng A 195:131–143

    Google Scholar 

  14. Ding N, Xu J, Yao Y, Wegner G, Lieberwirth I, Chen C (2009) Improvement of cyclability of Si as anode for Li-ion batteries. J Power Sources 192(2):644–651

    CAS  Google Scholar 

  15. Tian H, Tan X, Xin F, Wang C, Han W (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11:490–499

    CAS  Google Scholar 

  16. Eshetu GG, Figgemeier E (2019) Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. Chemsuschem 12(12):2515–2539

    CAS  Google Scholar 

  17. Zhang X, Song W-L, Chen H-S, Fang D (2020) Role of the binder in the mechanical integrity of micro-sized crystalline silicon anodes for Li-Ion batteries. J Power Sources 465:228290

    CAS  Google Scholar 

  18. Lee HA, Shin M, Kim J, Choi JW, Lee H (2021) Designing adaptive binders for microenvironment settings of silicon anode particles. Adv Mater 33(13):2007460

    CAS  Google Scholar 

  19. Wu C-C, Li C-C (2020) Distribution uniformity of water-based binders in Si anodes and the distribution effects on cell performance. ACS Sustain Chem Eng 8(17):6868–6876

    CAS  Google Scholar 

  20. Li J, Lewis R, Dahn J (2006) Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid-State Lett 10(2):A17

    Google Scholar 

  21. Mazouzi D, Lestriez B, Roué L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid-State Lett 12(11):A215

    CAS  Google Scholar 

  22. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010

    CAS  Google Scholar 

  23. Li C, Shi T, Yoshitake H, Wang H (2016) Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry. J Mater Chem A 4(43):16982–16991

    CAS  Google Scholar 

  24. Kuruba R, Datta MK, Damodaran K, Jampani PH, Gattu B, Patel PP, Shanthi PM, Damle S, Kumta PN (2015) Guar gum: structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes. J Power Sources 298:331–340

    CAS  Google Scholar 

  25. Fox AM, Niesen S, Du Q, Keim N, Vrankovic D, Buchmeiser MR (2022) Polyethylene imine crosslinked sodium alginate binder for micro-silicon/graphite composite anodes. J Electrochem Soc 169(10):100507

    CAS  Google Scholar 

  26. Karkar Z, Guyomard D, Roué L, Lestriez B (2017) A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochim Acta 258:453–466

    CAS  Google Scholar 

  27. Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon J-M, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249

    CAS  Google Scholar 

  28. Gordon R, Kassar M, Willenbacher N (2020) Effect of polymeric binders on dispersion of active particles in aqueous LiFePO4-based cathode slurries as well as on mechanical and electrical properties of corresponding dry layers. ACS Omega 5(20):11455–11465

    CAS  Google Scholar 

  29. Park JH, Sung SH, Kim S, Ahn KH (2022) Significant agglomeration of conductive materials and the dispersion state change of the Ni-rich NMC-based cathode slurry during storage. Ind Eng Chem Res 61(5):2100–2109

    CAS  Google Scholar 

  30. Kitamura K, Tanaka M, Mori T (2022) Effects of the mixing sequence on the graphite dispersion and resistance of lithium-ion battery anodes. J Colloid Interface Sci 625:136–144

    CAS  Google Scholar 

  31. Kim GY, Kong TY, Kim SY (2022) Effect of initial solvent concentration on the structure and property of polymer nanocomposites. Korea Aust Rheol J 34(4):359–367

    Google Scholar 

  32. Li Y, Luo Y, Wang Y, Luo J, Chen Y (2021) Research on characterization method and influencing factors of sedimentation stability of magnetorheological fluid. Korea Aust Rheol J 33:309–320

    Google Scholar 

  33. Kim DY, Jung SY, Lee YJ, Ahn KH (2022) Effect of colloidal interactions and hydrodynamic stress on particle deposition in a single micropore. Langmuir 38(19):6013–6022

    CAS  Google Scholar 

  34. Kim Y, Kim E, Kim D, Ahn CW, Kim BS, Ahn KH, Lee Y, Park JD (2023) Tuning the microstructure and rheological properties of MXene-polymer composite ink by interaction control. Korea Aust Rheol J 35:117–125

    Google Scholar 

  35. Wong DP, Tseng H-P, Chen Y-T, Hwang B-J, Chen L-C, Chen K-H (2013) A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries. Carbon 63:397–403

    CAS  Google Scholar 

  36. Armstrong BL, Hays KA, Ruther RE, Hawley WB, Rogers A, Greeley I, Cavallaro KA, Veith GM (2022) Role of silicon-graphite homogeneity as promoted by low molecular weight dispersants. J Power Sources 517:230671

    CAS  Google Scholar 

  37. Sung SH, Kim S, Park JH, Park JD, Ahn KH (2020) Role of PVDF in rheology and microstructure of NCM cathode slurries for lithium-ion battery. Materials 13(20):4544

    CAS  Google Scholar 

  38. Akuzum B, Agartan L, Locco J, Kumbur E (2017) Effects of particle dispersion and slurry preparation protocol on electrochemical performance of capacitive flowable electrodes. J Appl Electrochem 47:369–380

    CAS  Google Scholar 

  39. Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, Lu S (2020) The effect of solid content on the rheological properties and microstructures of a Li-ion battery cathode slurry. RSC Adv 10(33):19360–19370

    CAS  Google Scholar 

  40. Park JH, Kim SH, Ahn KH (2023) Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries. Colloids Surf A 664:131130

    CAS  Google Scholar 

  41. Lim S, Kim S, Ahn KH, Lee SJ (2015) The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries. J Power Sources 299:221–230

    CAS  Google Scholar 

  42. Gordon R, Orias R, Willenbacher N (2020) Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers. J Mater Sci 55:15867–15881

    CAS  Google Scholar 

  43. Ishii M, Nakamura H (2022) Influence of molecular weight and concentration of carboxymethyl cellulose on rheological properties of concentrated anode slurries for lithium-ion batteries. JCIS Open 6:100048

    Google Scholar 

  44. Kim Y, Kim S, Kim BS, Park JH, Ahn KH, Park JD (2022) Yielding behavior of concentrated lithium-ion battery anode slurry. Phys Fluids 34(12):123112

    CAS  Google Scholar 

  45. Huang L-H, Chen D, Li C-C, Chang Y-L, Lee J-T (2018) Dispersion homogeneity and electrochemical performance of Si anodes with the addition of various water-based binders. J Electrochem Soc 165(10):A2239

    CAS  Google Scholar 

  46. Andersson R, Hernández G, Edström K, Mindemark J (2020) Micro versus nano: impact of particle size on the flow characteristics of silicon anode slurries. Energ Technol 8(7):2000056

    CAS  Google Scholar 

  47. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  48. Moraru V, Lebovka N, Shevchenko D (2004) Structural transitions in aqueous suspensions of natural graphite. Colloids Surf A 242(1–3):181–187

    CAS  Google Scholar 

  49. Sahimi M, Arbabi S (1993) Mechanics of disordered solids. II. Percolation on elastic networks with bond-bending forces. Phys Rev B 47(2):703

    CAS  Google Scholar 

  50. Youssry M, Kamand FZ, Magzoub MI, Nasser MS (2018) Aqueous dispersions of carbon black and its hybrid with carbon nanofibers. RSC Adv 8(56):32119–32131

    CAS  Google Scholar 

  51. Niu R, Gong J, Xu D, Tang T, Sun Z-Y (2014) Rheological properties of ginger-like amorphous carbon filled silicon oil suspensions. Colloids Surf A 444:120–128

    CAS  Google Scholar 

  52. Youssry M, Guyomard D, Lestriez B (2015) Suspensions of carbon nanofibers in organic medium: rheo-electrical properties. Phys Chem Chem Phys 17(48):32316–32327

    CAS  Google Scholar 

  53. Hasegawa R, Aoki Y, Doi M (1996) Optimum graft density for dispersing particles in polymer melts. Macromolecules 29(20):6656–6662

    CAS  Google Scholar 

  54. Vogl U, Das P, Weber A, Winter M, Kostecki R, Lux S (2014) Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30(34):10299–10307

    CAS  Google Scholar 

  55. Kwon T-W, Choi JW, Coskun A (2018) The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 47(6):2145–2164

    CAS  Google Scholar 

  56. Scheraga HA (1998) Theory of hydrophobic interactions. J Biomol Struct Dyn 16(2):447–460

    CAS  Google Scholar 

  57. Fowkes FM (1968) Calculation of work of adhesion by pair potential suummation. J Colloid Interface Sci 28(3–4):493–505

    CAS  Google Scholar 

  58. Ludwig B, Zheng Z, Shou W, Wang Y, Pan H (2016) Solvent-free manufacturing of electrodes for lithium-ion batteries. Sci Rep 6(1):1–10

    Google Scholar 

  59. Rogachev AA, Tamulevičius S, Rogachev AV, Prosycevas I, Andrulevičius M (2009) Features of polytetrafluoroethylene coating growth on activated surfaces from gas phase. Interface Control Org Thin Films 9:85–89

    Google Scholar 

  60. Li J, Daniel C, Mohanty D, Wood D III (2016) Thick low-cost, high-power lithium-ion electrodes via aqueous processing. US Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. NRF-2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Contributions

JHP: Concenptualization, Methodology, Investigation, Data curation, Visualization, Formal analysis, Writing – original draft, CHA: Investigation, Data curation, Formal analysis, KHA: Concenptualization, Supervision, Project administration, Funding acquisition, Resources, Writing – review and editing.

Corresponding author

Correspondence to Kyung Hyun Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1310 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Ahn, C.H. & Ahn, K.H. Rheological behavior and microstructure formation of Si/C anode slurries for Li-ion batteries. Korea-Aust. Rheol. J. 35, 335–347 (2023). https://doi.org/10.1007/s13367-023-00067-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00067-w

Keywords

Navigation