Skip to main content
Log in

RNA N6-Methyladenosine Pathway Writer Genes Expression Levels and Clinical Severity of Infection in Covid-19 Patients

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Epigenetic modifications are known to be effective in the severity and mortality rate of SARS-CoV-2 infection. N6-methyladenosin (m6A) is a posttranscriptional modification that is carried out by m6A methyltransferases (METTL3, METTL14, and WTAP). This modification is effective in the formation of a natural immune response in the relationship between the viral genome and the host cell. In this study, the relationship between clinical severity and METTL3, METTL14, WTAP expression levels in Covid-19 patients was studied for the first time. Also, patients’ D-dimer, ferritin, and C-reactive protein values were compared with these gene expression levels. Total RNA was extracted from blood samples of 100 volunteers and gene expressions were measured using a quantitative real-time polymerase chain reaction. It was determined that METTL3 (p < 0.001) and METTL14 (p = 0.005) genes were statistically significant between case and control. In addition, METTL14 (p = 0.007) and WTAP (p = 0.015) gene expressions were significantly increased in patients with severe disease. METTL14 was statistically significant between the male patients and the control (fold change = 63.87, p = 0.015). Overexpression of the METTL14 gene may have resulted in higher clinical severity in males. Our results demonstrate that host N6-methyladenosine (m6A) methyltransferases may be effective in the development of SARS-CoV-2 infection and prognosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Zhong, P., Xu, J., Yang, D., Shen, Y., Wang, L., Feng, Y., et al., COVID-19-Associated gastrointestinal and liver injury: Clinical features and potential mechanisms, Signal Transduction Targeted Ther., 2020, vol. 5, p. 256. https://doi.org/10.1038/s41392-020-00373-7

    Article  CAS  Google Scholar 

  2. Qing, X., Chen, Q., and Wang, K., m6A regulator-mediated methylation modification patterns and characteristics in COVID-19 patients, Front. Public Health, 2022, vol. 10, p. 914193. https://doi.org/10.3389/fpubh.2022.914193

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burgess, H.M., Depledge, D.P., Thompson, L., Srinivas, K.P., Grande, R.C., Vink, El., et al., Targeting the m(6)A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication, Genes Dev., 2021, vol. 35, pp. 1005–1019. https://doi.org/10.1101/gad.348320.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, J., Xu, Y.P., Li, K., Ye, Q., Zhou, H.Y., Sun, H., et al., The m(6)A methylome of SARS-CoV-2 in host cells, Cell Res., 2021, vol. 31, pp. 404–414. https://doi.org/10.1038/s41422-020-00465-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., et al., A new coronavirus associated with human respiratory disease in China, Nature, 2020, vol. 579, pp. 265–269. https://doi.org/10.1038/s41586.020.2008.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cui, J., Li, F., and Shi, Z.L., Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol., 2019, vol. 17, no. 3, pp. 181–192.

    Article  CAS  PubMed  Google Scholar 

  7. Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang W., et al., Virology, epidemiology, pathogenesis, and control of COVID-19, Viruses, 2020, vol. 12, p. 372. https://doi.org/10.3390/v12040372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X., Hao, H., Ma, L., Zhang, Y., Hu, X., and Chen, Z., Methyltransferase-like 3 modulates severe acute respiratory syndrome coronavirus-2 RNA N6‑methyladenosine modification and replication, mBio, 2021, vol. 12, p. e01067-21. https://doi.org/10.1128/mBio.01067-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, N., Hui, H., Bray, B., Gonzalez, G.M., Zeller, M., Anderson, K.G., et al., METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection, Cell Rep., 2021, vol. 35, p. 109091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. http://www.qiagen.com/geneglobe.

  11. Chen, J., Wei, X., Wang, X., Liu, T., Zhao, Y., Chen, L., et al., TBK1-METTL3 axis facilitates antiviral immunity, Cell Rep., 2022, vol. 38, no. 7, p. 110373. https://doi.org/10.1016/j.celrep.2022.110373

    Article  CAS  PubMed  Google Scholar 

  12. Huang, H., Zhang, G., Ruan, G.X., Li, Y., Chen, W., Zou, J., et al., Mettl14-mediated m6A modification is essential for germinal center B cell response, J. Immunol., 2022, vol. 208, no. 8, pp. 1924–1936. https://doi.org/10.4049/jimmunol.2101071

    Article  CAS  PubMed  Google Scholar 

  13. Lang, F., Singh, R.K., Pei, Y., Zhang, S., Sun, K., and Robertson, E.S., EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis, PLoS Pathog., 2019, vol. 15, no. 6, p. e1007796. https://doi.org/10.1371/journal.ppat.1007796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, Z., Zhou, F., Tan, M., Wang, T., Chen, Y., Xu. W., et al., Targeting m6A modification inhibits herpes virus 1 infection, Genes Dis., 2022, vol. 9, no. 4, pp. 1114–1128. https://doi.org/10.1016/j.gendis.2021.02.004

  15. Zhu, X.-J., Feng, J.-Q., Zheng, M.-Z., Yang, Z.-R., Zhao, L., and Zhang, W., Metal-protein nanoparticles facilitate anti-VSV and H1N1 viruses through the coordinative actions on innate immune responses and METTL14, Macromol. Biosci., 2021, vol. 21, no. 4, p. e2000382. https://doi.org/10.1002/mabi.202000382

    Article  CAS  PubMed  Google Scholar 

  16. Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., et al., Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase, Cell Res., 2014, vol. 24, pp. 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sacco, M.-T., Bland, K.-M., and Homer, S.-M., WTAP targets the METTL3 m6A methyltransferase complex to cytoplasmic hepatitis C virus RNA to regulate infection, BioRxiv, 2022. https://doi.org/10.1101/2022.06.27.497872

  18. Xiao, H., Zhang, Y., Sun, L., Zhao, Z., Liu, W., and Luo, B., EBV downregulates the m6A “writer” WTAP in EBV- associated gastric carcinoma. Virus Res., 2021, vol. 304, p. 198510. https://doi.org/10.1016/j.virusres.2021.198510

    Article  CAS  PubMed  Google Scholar 

  19. Meng, Y., Zhang, Q., Wang, K., Zhang, X., Yang, R., Bi, K., et al., RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes, Cell Death Dis., 2021, vol. 12, p. 732. https://doi.org/10.1038/s41419-021-04012-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doerre, A. and Doblhammer, G., The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic, PLoS One, 2022, vol. 17, no. 5, p. e0268119. https://doi.org/10.1371/jounal.pone.0268119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin, J.M., Bai, P., He, W., Wu, F., Liu, X.F., Han, D.M., et al., Gender differences in patients with COVID-19: Focus on severity and mortality, Front. Public Health, 2020, vol. 8, p. 152. https://doi.org/10.3389/fpubh.2020.00152

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amgalan, A., Malinowski, A.K., and Othman, M., COVID-19 and sex-/gender-specific differences: Understanding the discrimination, Semin. Thromb. Hemostasis, 2021, vol. 47, pp. 341–347.

    Article  CAS  Google Scholar 

  23. Haitao, T., Vermunt, J.V., Abeykoon, J., Ghamrawi, R., Gunaratne, M., Jayachandran, M., et al., COVID-19 and sex differences: Mechanisms and biomarkers, Mayo Clin. Proc., 2020, vol. 95, no. 10, pp. 2189–2203.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, Y., Li, Y., Ran, X., Wang, D., Zheng, X., and Zhang, M., Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-KB/IL-6 signaling pathway, Cell. Mol. Life Sci., 2022, vol. 79, p. 311. https://doi.org/10.1007/s00018-022-04331-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez-Garcia, N., Garcia-González, J., Requena-Mullor, M., Rodriguez-Maresca, M.A., and Alarcón-Rodriguez R., Comparison of analytical values D-dimer, glucose, ferritin and C-reactive protein of symptomatic and asymptomatic COVID-19 patients, Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 9, p. 5354. https://doi.org/10.3390/ijerph19095354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farasani, A., Biochemical role of serum ferratin and d-dimer parameters in COVID 19 diagnosis, Saudi J. Biol. Sci., 2021, vol. 28, pp. 7486–7490. https://doi.org/10.1016/j.sjbs.2021.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, L., Li, H., Li, L., Liu, C., Yan, S., and Chen, H., Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis, J. Clin. Lab. Anal., 2020, vol. 34, p. e23618. https://doi.org/10.1002/jcla.23618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chávez-Ocaña, S.D.C., Bravata-Alcántara, J.C., Cortés-Ortiz, I.A., Reyes-Sandoval, A., Garcia-Machorro, J., and Herrera-Gonzalez, N.E., Parameters to predict the outcome of severe and critical COVID-19 patients when admitted to the hospital, J. Clin. Med., 2023, vol. 12, no. 4, p. 1323. https://doi.org/10.3390/jcm12041323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen, M., Li, Y., Wang, Y., Shao, J., Zhang, F., Yin, G., Chen, A., Zhang, Z., and Zheng, S., N6-Methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells, Redox Biol., 2021, vol. 47, p. 102151. https://doi.org/10.1016/j.redox.2021.102151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Mersin University Scientific Research Projects with the project numbered 2021-2-AP5-4537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdal Arslan.

Ethics declarations

Statement of Compliance with Standards of Research Involving Humans as Subjects

Ethics committee approval was received from Sivas Cumhuriyet University Clinical Research Ethics Committee (ethics committee decision no: 2020-10/01). The study was conducted in accordance with the Principles of the Declaration of Helsinki.

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, B., Baltacı, S., Bayyurt, B. et al. RNA N6-Methyladenosine Pathway Writer Genes Expression Levels and Clinical Severity of Infection in Covid-19 Patients. Mol. Genet. Microbiol. Virol. 38, 129–136 (2023). https://doi.org/10.3103/S0891416823020118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823020118

Keywords:

Navigation