skip to main content
research-article

A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix

Published:14 October 2023Publication History
Skip Abstract Section

Abstract

A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer matrix A of dimension n. The algorithm uses quadratic integer multiplication and cubic matrix multiplication and has running time bounded by O(n3 (log n + log ||A||)2(log n)2) bit operations, where ||A||= max ij |Aij| denotes the largest entry of A in absolute value. A variant of the algorithm that uses pseudo-linear integer multiplication is given that has running time (n3 log ||A||)1+o(1) bit operations, where the exponent “+ o(1)” captures additional factors c1 (log n)c2 (loglog||A||)c3 for positive real constants c1,c2,c3.

REFERENCES

  1. J. Alman and V. V. Williams. 2021. A refined laser method and faster matrix multiplication. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’21), 522–539. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. E. Bach and J. Shallit. 1996. Algorithmic Number Theory, volume 1: Efficient Algorithms. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Beckermann and G. Labahn. 1994. A uniform approach for the fast computation of matrix–type Padé approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994), 804–823.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted normal forms of polynomial matrices. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’99), S. Dooley (Ed.). ACM Press, New York, 189–196.Google ScholarGoogle Scholar
  5. S. Birmpilis, G. Labahn, and A. Storjohann. 2020. A Las Vegas algorithm for computing the Smith form of a nonsingular integer matrix. In Proceedings International Symposium on Symbolic and Algebraic Computation: ISSAC’20, New York, NY, USA, ACM, 38–45.Google ScholarGoogle Scholar
  6. S. Birmpilis, G. Labahn, and A. Storjohann. 2023. A fast algorithm for computing the Smith normal form with multipliers for a nonsingular integer matrix. J. Symbol. Comput. 116 (2023), 146–182.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T.-W. J. Chou and G. E. Collins. 1982. Algorithms for the solutions of systems of linear diophantine equations. SIAM J. Comput. 11 (1982), 687–708.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. E. Collins. 1968. Computing Time Analyses for Some Arithmetic and Algebraic Algorithms. Technical Report 36, University of Wisconsin—Madison.Google ScholarGoogle Scholar
  9. P. D. Domich, R. Kannan, and L. E. Trotter, Jr. 1987. Hermite normal form computation using modulo determinant arithmetic. Math. Operat. Res. 12, 1 (1987), 50–59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. L. Hafner and K. S. McCurley. 1989. A rigorous subexponential algorithm for computation of class groups. J. Am. Math. Soc., 2 (1989), 837–850.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Harvey and J. van der Hoeven. 2021. Integer multiplication in time \({O}(n \log n)\). Ann. Math. 193 (2021), 563–617.Google ScholarGoogle ScholarCross RefCross Ref
  12. C. Hermite. 1851. Sur l’introduction des variables continues dans la théorie des nombres. J. Reine Angew. Math. 41 (1851), 191–216.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. A. Howell. 1986. Spans in the module \((\mathbb {Z}_m)^s\). Lin. Multilin. Algebr. 19 (1986), 67—77.Google ScholarGoogle ScholarCross RefCross Ref
  14. E. Hubert and G. Labahn. 2013. Scaling invariants and symmetry reduction of dynamical systems. Found. Comput. Math. 13, 4 (2013), 479–516.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. S. Iliopoulos. 1989. Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Comput. 18, 4 (1989), 658–669.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Kannan and A. Bachem. 1979. Polynomial algorithms for computing the Smith and Hermite normal forms of and integer matrix. SIAM J. Comput. 8, 4 (1979), 499–507.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix. J. Complex 42 (2017), 44–71.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Liu and Y. Pan. 2019. Computing Hermite normal form faster via solving system of linear equations. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’19). ACM, New York, NY, 283–290.Google ScholarGoogle Scholar
  19. D. Micciancio and B. Warinschi. 2001. A linear space algorithm for computing the Hermite normal form. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’01). B. Mourrain (Ed.), ACM Press, New York, NY, 231—236.Google ScholarGoogle Scholar
  20. C. Pauderis and A. Storjohann. 2013. Computing the invariant structure of integer matrices: Fast algorithms into practice. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM, New York, NY, 307–314.Google ScholarGoogle Scholar
  21. C. Pernet and W. Stein. 2010. Fast computation of Hermite normal forms of integer matrices. J. Number Theory 130, 7 (2010), 1675–1683.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Schrijver. 1998. Theory of Linear and Integer Programming. John Wiley & Sons.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Storjohann. 2000. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute of Technology, ETH–Zurich.Google ScholarGoogle Scholar
  24. A. Storjohann. 2015. On the complexity of inverting integer and polynomial matrices. Comput. Complex. 24, 4 (2015), 777—821.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Storjohann and G. Labahn. 1996. Asymptotically fast computation of Hermite normal forms of integer matrices. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’96), Y. N. Lakshman (Ed.). ACM Press, New York, NY, 259–266.Google ScholarGoogle Scholar
  26. A. Storjohann and T. Mulders. 1998. Fast algorithms for linear algebra modulo N. In Proceedings of the European Symposium on Algorithms (ESA’98), G. Bilardi, G. F. Italiano, A. Pietracaprina, and G. Pucci (Eds.), LNCS 1461, Springer Verlag, Berlin, 139–150.Google ScholarGoogle Scholar
  27. W. Zhou and G. Labahn. 2012. Efficient algorithms for order basis computation. J. Symbol. Comput. 47, 7 (2012), 793–819.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. Zhou and G. Labahn. 2013. Computing column bases of polynomial matrices. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM Press, Boston, MA, 379–388.Google ScholarGoogle Scholar
  29. W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing minimal nullspace basis. In Proceedings International Symposium on Symbolic and Algebraic Computation (ISSAC’12), J. van der Hoeven and M. van Hoeij (Eds.), ACM Press, New York, NY, 366–373.Google ScholarGoogle Scholar

Index Terms

  1. A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Algorithms
        ACM Transactions on Algorithms  Volume 19, Issue 4
        October 2023
        255 pages
        ISSN:1549-6325
        EISSN:1549-6333
        DOI:10.1145/3614237
        • Editor:
        • Edith Cohen
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 October 2023
        • Online AM: 31 August 2023
        • Accepted: 26 August 2023
        • Revised: 16 August 2023
        • Received: 23 September 2022
        Published in talg Volume 19, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)81
        • Downloads (Last 6 weeks)10

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text