Skip to main content
Log in

Investigation of feature-based and space-filling tool path strategies for formability in incremental sheet metal forming

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Incremental sheet metal forming (ISF) is a versatile dieless forming process for manufacturing complex sheet metal components. The toolpath is one of the most critical process parameters, significantly influencing the ISF formability. The conventional toolpath strategies, such as spiral and constant z-slice-based tool paths, do not prove helpful for complex asymmetries in part geometry. The approach to toolpath planning in ISF should consider both material behavior and design complexity. This work compares conventional toolpaths with two strategies, namely feature-based and space-filling fractal tool paths. Material thinning and geometric deviations are critical limitations for successful part development. All toolpath strategies were evaluated for material distribution, geometric accuracy, and fracture depth using four carefully designed components with gradually increasing asymmetry. As evident from the results obtained, the material deformation was sensitive to the choice of toolpath strategies. The feature-based tool path captures the part curvatures more uniformly, leading to homogeneous thickness distribution. At the same time, fractal-based strategies lead to lower overall geometric deviation in the region of curved profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Jeswiet J (2005) Asymmetric incremental sheet forming. In: Advanced Materials Research, vol. 6, Trans Tech Publ. pp 35–58

  2. Emmens W, van den Boogaard A (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209(8):3688–3695 https://doi.org/10.1016/j.jmatprotec.2008.10.003. https://www.sciencedirect.com/science/article/pii/S0924013608007267

  3. Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann 51(1):199–202. https://doi.org/10.1016/S0007-8506(07)61499-1https://www.sciencedirect.com/science/article/pii/S0007850607614991

  4. Bhattacharya A, Maneesh A, Venkata Reddy N, Cao J (2011) Formability and surface finish studies in single point incremental forming

  5. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Annals 62(1):243–246

    Article  Google Scholar 

  6. Vanhove H, Mohammadi A, Guo YS, Duflou JR (2014) High-speed single point incremental forming of an automotive aluminium alloy. Key Eng Mater 622:433–439

    Article  Google Scholar 

  7. Silva MB, Nielsen PS, Bay N, Cao Martins PAF (2011) Formability and surface finish studies in single point incremental forming. Int J Adv Manuf Technol

  8. Ziran X, Gao L, Hussain G, Cui Z (2010) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46:1113–1118

    Article  Google Scholar 

  9. Eyckens P, Van Bael A, Aerens R, Duflou J, Van Houtte P (2008) Small-scale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Forming 1:1159–1162

    Article  Google Scholar 

  10. Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining box-bbehnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74:163–185

    Article  Google Scholar 

  11. Desai BV, Desai KP, Raval HK (2014) Die-less rapid prototyping process: Parametric investigations. Procedia materials science 6:666–673

    Article  Google Scholar 

  12. Jeswiet J, Hagan E, Szekeres A (2002) Forming parameters for incremental forming of aluminium alloy sheet metal. Proc Inst Mech Eng B J Eng Manuf 216(10):1367–1371

    Article  Google Scholar 

  13. Sarraji W, Hussain J, Ren W-X (2012) Experimental investigations on forming time in negative incremental sheet metal forming process. Mater Manuf Process 27(5):499–506

    Article  Google Scholar 

  14. Iseki H (1993) Flexible and incremental sheet metal bulging using a few spherical rollers. Trans Jpn Soc Mech Eng 59:2849

    Article  Google Scholar 

  15. Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool-a study of a numerical control forming system ii. Journal of the Japan society for technology of plasticity 35(406):1311–1316

    Google Scholar 

  16. Araghi BT, Manco G, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming. CIRP Ann 58(1):225–228

    Article  Google Scholar 

  17. Malhotra R, Cao J, Ren F, Kiridena V, Cedric Xia Z, Reddy N (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng 133(6)

  18. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):88–114. https://doi.org/10.1016/S0007-8506(07)60021-3https://www.sciencedirect.com/science/article/pii/S0007850607600213

  19. Kim T, Yang D (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42(7):1271–1286

    Article  MATH  Google Scholar 

  20. Hirt G, Ames J, Bambach M, Kopp R, Kopp R (2004) Forming strategies and process modelling for cnc incremental sheet forming. CIRP Ann 53(1):203–206. https://doi.org/10.1016/S0007-8506(07)60679-9https://www.sciencedirect.com/science/article/pii/S0007850607606799

  21. Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Institut Mech Eng Part B J Eng Manuf 218(11):1453–1459. https://doi.org/10.1243/0954405042418400

    Article  Google Scholar 

  22. Duflou J, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken A (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann 57(1):253–256

    Article  Google Scholar 

  23. Attanasio A, Ceretti E, Giardini C (2006) Optimization of tool path in two points incremental forming. J Mater Process Technol 177:409–412

    Article  Google Scholar 

  24. Bârsan A, Racz S-G, Breaz R, Crenganiş M (2023) Evaluation of the dimensional accuracy through 3d optical scanning in incremental sheet forming. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.175https://www.sciencedirect.com/science/article/pii/S2214785323012178

  25. Lee E (2003) Contour offset approach to spiral toolpath generation with constant scallop height. Comput Aid Des 35(6):511–518. https://doi.org/10.1016/S0010-4485(01)00185-3https://www.sciencedirect.com/science/article/pii/S0010448501001853

  26. Nirala HK, Agrawal A (2017) Fractal Geometry Rooted Incremental Toolpath for Incremental Sheet Forming, J Manuf Sci Eng 140 (2):021005. https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/140/2/021005/6275186/manu_140_02_021005.pdf, https://doi.org/10.1115/1.4037237

  27. Skjoedt M, Hancock MH, Bay N (2007) Creating helical tool paths for single point incremental forming. Key Eng Mater 344:583–590

    Article  Google Scholar 

  28. Malhotra R, Reddy NV, Cao J (2010) Automatic 3d spiral toolpath generation for single point incremental forming. J Manuf Sci Eng 132(6)

  29. Kopac J, Kampus Z (2005) Incremental sheet metal forming on cnc milling machine-tool. J Mater Process Technol 162–163:622–628. https://doi.org/10.1016/j.jmatprotec.2005.02.160https://www.sciencedirect.com/science/article/pii/S0924013605000804 (aMPT/AMME05)

  30. Vanhove H, Gu J, Sol H, Duflou J (2011) Process window extension for incremental forming through optimal work plane rotation. In: Special Edition: 10th International Conference on Technology of Plasticity, ICTP 2011. pp 508–512

  31. Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233. https://doi.org/10.1016/j.jmatprotec.2013.01.023https://www.sciencedirect.com/science/article/pii/S092401361300040X

  32. Tanaka S (2011) Incremental sheet forming with direction control of path planes, ICTP2011. 503–507

  33. Hagan E, Jeswiet J (2003) A review of conventional and modern single-point sheet metal forming methods. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 217(2):213–225

    Article  Google Scholar 

  34. Hu VHG, J, S. H, D. JR, (2011) Process window extension for incremental forming through optimal work plane rotation. Steel Res Int 508–512

  35. Tanaka S, Hayakawa G, K, T. Nakamura, (2011) Incremental sheet forming with direction control of path planes. Steel Res Int 503–507

  36. Li J, Hu J, Pan J, Geng P (2012) Thickness distribution and design of a multistage process for sheet metal incremental forming. Int J Adv Manuf Technol 62:981–988

    Article  Google Scholar 

  37. Wu S, Gao L, Matsuoka Y, Rashed S, Zhao Y, Ma N (2022) Multistep toolpath approach of improving the dimensional accuracy of a non705 axisymmetric part in incremental sheet forming and its mechanism analysis. J Mech Sci Technol

  38. Zhu H, Liu L (2021) Research the cnc incremental forming of straightwall parts based on a virtual auxiliary body. J Mater Process Technol 288. https://doi.org/10.1016/j.jmatprotec.2020.116841https://www.sciencedirect.com/science/article/pii/S0924013620302557

  39. Jung K-S, Yu J-H, Chung W-J, Lee C-W (2020) Tool path design of the counter single point incremental forming process to decrease shape error. Materials 13(21). https://doi.org/10.3390/ma13214719https://www.mdpi.com/1996-1944/13/21/4719

  40. Verbert J, Duflou JR, Lauwers B (2007) Feature based approach for increasing the accuracy of the spif process. Key Eng Mater 344:527–534

  41. Formisano A, Durante M, Boccarusso L, Memola F (2022) Capece. A numerical approach to optimize the toolpath strategy for polymers forming, J Mech Sci Technol

    Google Scholar 

  42. Gupta AK, Shahare H, Kumar P, Dubey AK, Pustovoytov D, Yu H, Pesin A, Tandon P (2023) Effect of tool path strategy and tooltip profile on geometrical feature and surface quality of al-6061 alloy during deformation machining in bending mode. Adv Mater Process Technol 9(1):297–314. https://doi.org/10.1080/2374068X.2022.2091835

    Article  Google Scholar 

  43. Nirala HK, Agrawal A (2022) Adaptive increment based uniform sheet stretching in incremental sheet forming (isf) for curvilinear profiles. J Mater Process Technol 306:117610. https://doi.org/10.1016/j.jmatprotec.2022.117610https://www.sciencedirect.com/science/article/pii/735 S0924013622001224

  44. Liu Z, Li Y, Meehan PA (2013) Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies. Mater Manuf Process 28(5):562–571. https://doi.org/10.1080/10426914.2013.763964

    Article  Google Scholar 

  45. Ai S, Long H (2019) A review on material fracture mechanism in incremental sheet forming. Int J Adv Manuf Technol 104. https://doi.org/10.1007/s00170-019-03682-6

Download references

Acknowledgements

The authors would like to acknowledge the Department of Heavy Industries, Government of India, and Mahindra & Mahindra for funding the project (sanction number: 7(8)/2019-AEI (19310)). The authors would like to acknowledge the Center of Excellence on Materials and Manufacturing for Futuristic Mobility, IIT Madras also, for the support. The authors would also like to acknowledge undergrad students at IIT Madras, Mansha Kochar and Nithin Padiyar for their assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hariharan Krishnaswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, S., Karvaje, K.S., Krishnaswamy, H. et al. Investigation of feature-based and space-filling tool path strategies for formability in incremental sheet metal forming. Int J Mater Form 16, 60 (2023). https://doi.org/10.1007/s12289-023-01781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-023-01781-0

Keywords

Navigation