Skip to main content
Log in

Population genetic diversity and structure of the euphausiids Thysanoessa inermis and T. raschii in the Arctic Ocean: inferences from COI barcodes

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract 

Euphausiids are an ecologically significant and abundant group of marine zooplankton that form key links between primary producers and consumers in pelagic food webs throughout the world ocean. The euphausiid species, Thysanoessa inermis and T. raschii, have boreal-Arctic distributions, occurring in the North Atlantic, North Pacific, and Arctic Oceans. The species differ in depth ranges and habitat preferences: T. raschii is found in coastal waters on continental shelf habitats, while T. inermis is abundant in slope and deep water regions. Population genetic analysis based on DNA sequence variation of the mitochondrial cytochrome oxidase I (COI) barcode region was carried out for identified specimens of T. inermis and T. raschii collected in the Arctic (Beaufort/Chukchi and Norwegian Seas, Svalbard Area) and North Atlantic (Gulf of St. Lawrence, Labrador Sea, Iqaluit, Hudson Bay). Populations of T. inermis in the N. Atlantic showed high connectivity, but were genetically isolated from the Beaufort/Chukchi Sea population. Population genetic diversity of T. inermis showed high haplotype and nucleotide diversity and no departures from neutral expectations. In contrast, T. raschii showed lower haplotype and nucleotide diversity, with highly significant departures from neutral expectations. A possible hypothesis is that T. raschii experienced a significant historical demographic event (e.g., population bottleneck), while T. inermis maintained a stable population over recent evolutionary history. The results provide new insights into population dynamics and implications for responses to climate change of these key euphausiid species for the Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarbakke ON, Bucklin A, Halsband C, Norrbin F (2014) Comparative phylogeography and demographic history of five sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Atlantic Ocean. J Exp Mar Biol Ecol 461:479–488

    Article  Google Scholar 

  • Baker AdeC, Boden BP, Brinton E (1990) A practical guide to the euphausiids of the world. Natural History Museum Publications, London

  • Alfaro-Lucas JM, Chaudhary C, Brandt A, Saeedi H (2023) Species composition comparisons and relationships of Arctic marine ecoregions. Deep Sea Res I 198:104077. https://doi.org/10.1016/j.dsr.2023.104077

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astthorsson OS, Pálsson OK (1987) Predation on euphausiids by cod, Gadus morhua, in winter in Icelandic subarctic waters. Mar Biol 96:327–334

    Article  Google Scholar 

  • Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Mass

    Book  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Molec Ecol 13:827–836

    Article  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2012) Migrate documentation version 3.2.1. Florida State University Press, Tallahasee, Fla

    Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigg GR (2014) Environmental confirmation of multiple ice age refugia for Pacific cod, Gadus macrocephalus. Evol Ecol 28:177–191

    Article  Google Scholar 

  • Bigg GR, Cunningham CW, Ottersen G, Pogson GH, Wadley MR, Williamson P (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proc Roy Soc B 275:163–173

    Article  Google Scholar 

  • Blanco-Bercial L, Álvarez-Marqués F, Bucklin A (2011) Comparative phylogeography and connectivity of sibling species of the marine copepod Clausocalanus (Calanoida). J Exptl Mar Biol Ecol 404:108–115. https://doi.org/10.1016/j.jembe.2011.05.011

    Article  Google Scholar 

  • Bowen BW, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS, Toonen RJ, Briggs JC (2016) Comparative phylogeography of the ocean planet. Proc Nat Acad Sci 113:7962–7969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringloe TT, Verbruggen H, Saunders GW (2020) Unique biodiversity in Arctic marine forests is shaped by diverse recolonization pathways and far northern glacial refugia. Proc Natl Acad Sci 117:22590–22596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinton E (1962) The distribution of Pacific euphausiids. Bull Scripps Inst Oceanogr 8:51–269

    Google Scholar 

  • Brinton E, Ohman MD, Townsend AW, Knight MD, Bridgeman AL (2000) Euphausiids of the world ocean. ETI world biodiversity database CD ROM series. Springer Publishing, Heidelberg, Heidelberg

    Google Scholar 

  • Brugler ET, Pickart RS, Moore GWK, Roberts S, Weingartner TJ (2014) Seasonal to interannual variability of the Pacific water boundary current in the Beaufort Sea. Progr Oceanogr 127:1–20

    Article  Google Scholar 

  • Bucklin A, Wiebe PH (1998) Low mitochondrial diversity and small effective population sizes of the copepods, Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciation. J Heredity 89:383–392

    Article  CAS  Google Scholar 

  • Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, Färber Lorda J, Pierson JJ (2007) DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res 29:483–493

    Article  CAS  Google Scholar 

  • Bucklin A, DiVito K, Smolina I, Choquet M, Questel JM, Hoarau G, O’Neill RJ (2018) Population genomics of marine zooplankton. In: Rajora OP, Oleksiak M (eds) Population genomics: marine organisms. Springer, pp 61–102. https://doi.org/10.1007/13836_2017_9

    Chapter  Google Scholar 

  • Bucklin A, Peijnenburg KTCA, Kosobokova KN, O’Brien TD, Blanco-Bercial L, Cornils A, Falkenhaug T, Hopcroft RR, Hosia A, Laakmann S, Li C, Martell L, Questel JM, Wall-Palmer D, Wang M, Wiebe PH, Weydmann-Zwolicka A (2021a) Toward a global reference database of COI barcodes for marine zooplankton. Mar Biol 168:78

    Article  Google Scholar 

  • Bucklin A, Questel JM, Blanco-Bercial L, Smolenack SB, Frenzel A, Wiebe PH (2021b) Population connectivity of the euphausiid, Stylocheiron elongatum, in the Gulf Stream (NW Atlantic Ocean) in relation to COI barcode diversity of Stylocheiron species. ICES J Marine Sci 9:3464–3476. https://doi.org/10.1093/icesjms/fsab158

    Article  Google Scholar 

  • Bucklin A, Peijnenburg KTCA, Kosobokova KN, Machida RJ (2021c) New insights into biodiversity, biogeography, ecology, and evolution of marine zooplankton based on molecular approaches. ICES J Mar Sci 78:3281–3287. https://doi.org/10.1093/icesjms/fsab198

    Article  Google Scholar 

  • Burns JJ, Montague JJ, Cowles CJ (1993) The bowhead whale. Society for Marine Mammalogy, Lawrence, Kansas, p 787

    Google Scholar 

  • Burridge AK, Goetze E, Raes N, Huisman J, Peijnenburg KTCA (2015) Global biogeography and evolution of Cuvierina pteropods. BMC Evol Biol 15:39. https://doi.org/10.1186/s12862-015-0310-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrol J, Trombetta T, Amaudrut S, Aulanier F, Sage R, Tremblay R, Nozais C, Starr M, Plourde S, Winkler G (2019) Trophic niche partitioning of dominant North-Atlantic krill species, Meganyctiphanes norvegica, Thysanoessa inermis, and T. raschii. Limnol Oceanogr 64:165–181. https://doi.org/10.1002/lno.11027

    Article  Google Scholar 

  • Campbell RG, Ashjian CJ, Sherr EB, Sherr BF, Lomas MW, Ross C, Alatalo P, Gelfman C, Van Keuren D (2016) Mesozooplankton grazing during spring sea-ice conditions in the eastern Bering Sea. Deep Sea Res II 134:157–172

    Article  CAS  Google Scholar 

  • Choi H, Won H, Kim J-H, Yang EJ, Cho K-H, Lee Y, Kang S-H, Shin K-H (2021) Trophic dynamics of Calanus hyperboreus in the Pacific Arctic Ocean. J Geophys Res 126:e2020JC017063

    Article  Google Scholar 

  • Chust G, Vogt M, Benedetti F, Nakov T, Villéger S, Aubert A, Vallina SM, Righetti D, Not F, Biard T, Bittner L (2017) Mare incognitum: a glimpse into future plankton diversity and ecology research. Front Mar Sci 4:68. https://doi.org/10.3389/fmars.2017.00068

    Article  Google Scholar 

  • Cope LE, Plourde S, Winkler G (2021) Seasonal variation of growth and reproduction of the subarctic krill species, Thysanoessa raschii, driven by environmental conditions in the Estuary and Gulf of St. Lawrence J Plank Res 43:458–474. https://doi.org/10.1093/plankt/fbab032

    Article  Google Scholar 

  • Dalpadado P, Skjoldal HR (1996) Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar Ecol Progr Ser 144:175–183. https://doi.org/10.3354/meps144175

    Article  Google Scholar 

  • Danielson SL, Ahkinga O, Ashjian C, Basyuk E, Cooper LW, Eisner L, Farley E, Iken KB, Grebmeier JM, Juranek L, Khen G, Jayne SR, Kikuchi T, Ladd C, Lu K, McCabe RM, Moore GWK, Nishino S, Ozenna F, Pickart RS, Polyakov I, Stabeno PJ, Thoman R, Williams WJ, Wood K, Weingartner TK (2020) Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves. Deep Sea Res II 177:104781

    Article  Google Scholar 

  • DeHart HM, Blanco-Bercial L, Passacantando M, Questel JM, Bucklin A (2020) Pathways of pelagic connectivity: Eukrohnia hamata (Chaetognatha) in Arctic Ocean. Front Mar Sci 7:396. https://doi.org/10.3389/fmars.2020.00396

    Article  Google Scholar 

  • Doyle MJ, Strom SL, Coyle KO, Hermann AJ, Ladd C, Matarese AC, Shotwell SK, Hopcroft RR (2019) Early life history phenology among Gulf of Alaska fish species: strategies, synchronies, and sensitivities. Deep Sea Res II 165:41–73

    Article  Google Scholar 

  • Edgar RC (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Einarsson H (1945) Euphausiacea 1. Northern Atlantic species. Dana Rep 27:1–185

  • Eisner LB, Yasumiishi EM, Andrews AG, O’Leary CA (2020) Large copepods as leading indicators of walleye pollock recruitment in the southeastern Bering Sea: sample-based and spatio-temporal model (VAST) results. Fish Res 232:105720

    Article  Google Scholar 

  • Ershova EA, Hopcroft RR, Kosobokova KN, Matsuno K, Nelson RJ, Yamaguchi A, Eisner LB (2015) Long-term changes in summer zooplankton communities of the western Chukchi Sea, 1945–2012. Oceanogr 28:100–115. https://doi.org/10.5670/oceanog.2015.60

    Article  Google Scholar 

  • Ershova EA, Kosobokova KN, Banas NS, Ellingsen I, Niehoff B, Hildebrandt N, Hirche H-J (2021) Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean. Glob Change Biol 27:2128–2143

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Res 10:564–567

    Article  Google Scholar 

  • Ferguson SH, Loseto LL, Mallory ML (2010) A little less Arctic: top predators in the world’s largest northern inland sea. Springer, Hudson Bay, p 288

    Book  Google Scholar 

  • Folmer O, Black M, Hoen W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molec Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Gamfeldt L, Lefcheck JS, Byrnes JE, Cardinale BJ, Duffy JE, Griffin JN (2015) Marine biodiversity and ecosystem functioning: what’s known and what’s next? Oikos 124:252–265

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Huenerlage K, Cascella K, Corre E, Toomey L, Lee CY, Buchholz F, Toullec JY (2016) Responses of the arcto-boreal krill species Thysanoessa inermis to variations in water temperature: coupling Hsp70 isoform expressions with metabolism. Cell Stress Chap 21:969–981. https://doi.org/10.1007/s12192-016-0720-6

    Article  CAS  Google Scholar 

  • Hunt GL, Harrison NM, Hamner WM, Obst BS (1988) Observations of a mixed-species flock of birds foraging on euphausiids near St. Matthew Island. Bering Sea the Auk 105:345–349. https://doi.org/10.2307/4087500

    Article  Google Scholar 

  • Hunt GL, Coyle KO, Eisner LB, Farley EV, Heintz RA, Mueter F, Napp JM, Overland JE, Ressler PH, Salo S (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the oscillating control hypothesis. ICES J Mar Sci 68:1230–1243

    Article  Google Scholar 

  • Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Nat Acad Sci USA 87:2264–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutsen T, Wiebe PH, Gjøsæter H, Ingvaldsen RB, Lien G (2017) High latitude epipelagic and mesopelagic scattering layers - a reference for future Arctic ecosystem change. Front Mar Sci 4:334. https://doi.org/10.3389/fmars.2017.00334

    Article  Google Scholar 

  • Kosobokova KN, Hopcroft RR (2010) Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep Sea Res II 57:96–110

    Article  Google Scholar 

  • Kosobokova KN, Hopcroft RR, Hirche HJ (2011) Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodiv 41:29–50

    Article  Google Scholar 

  • Kulagin DN, Lunina AA, Simakova UV, Vereshchaka AL (2021) Progressing diversification and biogeography of the mesopelagic Nematoscelis (Crustacea: Euphausiacea) in the Atlantic. ICES J Mar Sci 78:3457–3463

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molec Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kylin H (1956) Die gattungen der rhodophyceen. CWK Gleerup, Lund, Sweden, p 673

    Google Scholar 

  • Lenz PH, Lieberman B, Cieslak MC, Roncalli V, Hartline DK (2021) Transcriptomics and metatranscriptomics in zooplankton: wave of the future? J Plankton Res 43:3–9

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DNASP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lowry LF, Sheffield G, George JC (2004) Bowhead whale feeding in the Alaskan Beaufort Sea, based on stomach contents analyses. J Cetacean Res Man 6:215–223

    Article  Google Scholar 

  • Mauchline J (1980) The biology of mysids and euphausiids. Part 2. The biology of euphausiids. Adv Mar Biol 18:372–623

    Google Scholar 

  • Mauchline J, Fisher LR (1969) The biology of euphausiids. Adv Mar Biol 7:1–454

    Google Scholar 

  • Melo DCM, Lira SMA, Moreira APB, Freitas L, Lima CAD, Thompson F et al (2020) Genetic diversity and connectivity of Flaccisagitta enflata (Chaetognatha: Sagittidae) in the tropical Atlantic Ocean (northeastern Brazil). PLoS ONE 15:e0231574. https://doi.org/10.1371/journal.pone.0231574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen JM, Rogers LA, Brodeur RD, Thompson AR, Auth TD, Deary AL, Duffy-Anderson JT, Galbraith M, Koslow JA, Perry RI (2021) Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Global Chng Biol 27:506–520

    Article  Google Scholar 

  • Peck MA, Huebert KB, Llopiz JK (2012) Intrinsic and extrinsic factors driving match-mismatch dynamics during the early life history of marine fishes. Adv Ecol Res 47:177–302

    Article  Google Scholar 

  • Peijnenburg KTCA, Goetze E (2013) High evolutionary potential of marine zooplankton. Trends Ecol Evol 3:2765–2783

    Article  Google Scholar 

  • Peijnenburg KTCA, van Haastrecht EK, Fauvelot C (2005) Present day genetic composition suggests contrasting demographic histories of two dominant chaetognaths of the North-East Atlantic, Sagitta elegans and S. setosa. Mar Biol 147:1279–1289

    Article  Google Scholar 

  • Pickart RS (2004) Shelfbreak circulation in the Alaskan Beaufort Sea: mean structure and variability. J Geophys Res 109:C04024. https://doi.org/10.1029/2003JC001912

    Article  Google Scholar 

  • Pickart RS, Moore GWK, Torres DJ, Fratantoni PS, Goldsmith RA, Yang J (2009) Upwelling on the continental slope of the Alaskan Beaufort Sea: storms, ice, and oceanographic response. J Geophys Res 114:C00A13. https://doi.org/10.1029/2208JC005009

    Article  Google Scholar 

  • Poloczanska ES, Burrows MT, Brown CJ, García Molinos J, Halpern BS, Hoegh-Guldberg O, Kappel CV, Moore PJ, Richardson AJ, Schoeman DS, Sydeman WJ (2016) Responses of marine organisms to climate change across oceans. Front Mar Sci 3:62

    Article  Google Scholar 

  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember R, Yulin A (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291

    Article  CAS  PubMed  Google Scholar 

  • Polyakov IV, Alkire MB, Bluhm BA, Brown KA, Carmack EC, Chierici M, Danielson SL, Ellingsen I, Ershova EA, Gårdfeldt K, Ingvaldsen RB, Pnyushkov AV, Slagstad D, Wassmann P (2020) Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front Mar Sci 7:491. https://doi.org/10.3389/fmars.2020.00491

    Article  Google Scholar 

  • Proshutinsky A, Dukhovskoy D, Timmermans M-L, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Phil Trans Roy Soc A 373:20140160

    Article  Google Scholar 

  • Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41

    Article  Google Scholar 

  • Questel JM, Blanco-Bercial L, Bucklin A, Hopcroft RR (2016) Phylogeography and connectivity of four sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Pacific and Arctic Ocean. J Plankton Res 38:610–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Rudels B, Jones EP, Anderson LG, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment. American Geophysical Union, Washington DC, pp 33–46

    Google Scholar 

  • Rudels B, Muench RD, Gunn J, Schauer U, Friedrich HJ (2000) Evolution of the Arctic Ocean Boundary Current north of the Siberian Shelves. J Marine Sys 25:77–99

    Article  Google Scholar 

  • Rudels B, Jones EP, Schauer U, Eriksson P (2004) Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res 23:181–208

    Article  Google Scholar 

  • Rudels B, Korhonen M, Budeus G, Beszczynska-Moller A, Schauer U, Nummelin A, Quadfasel D, Valdimarsson H (2012) The East Greenland Current and its impacts on the Nordic Seas: observed trends in the past decade. ICES J Mar Sci 69:841–851

    Article  Google Scholar 

  • Schulze LM, Pickart RS (2012) Seasonal variation of upwelling in the Alaskan Beaufort Sea: impact of sea ice cover. J Geophys Res 117:C06022. https://doi.org/10.1029/2012JC007985

    Article  Google Scholar 

  • Shu Q, Wang Q, Årthun M, Wang S, Song Z, Zhang M, Qiao F (2022) Arctic Ocean amplification in a warming climate in CMIP6 models. Sci Adv 8:p.eabn9755. https://doi.org/10.1126/sciadv.abn9755

    Article  Google Scholar 

  • Smith SL (1990) Growth, development and distribution of the euphausiids Thysanoessa raschii (M. Sars) and Thysanoessa inermis (Kroyer) in the southeastern Bering Sea. In: Sakshaug E, Hopkins CCE, Oritsland NA (ed) Proceedings of the Pro Mare Symposium on polar marine ecology, Trondheim, 12–16 May 1990. Polar Res 10:461–478

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molec Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermans M-L, Toole JM (2023) The Arctic Ocean’s Beaufort Gyre. Ann Rev Mar Sci 15:223–248. https://doi.org/10.1146/annurev-marine-032122-012034

    Article  PubMed  Google Scholar 

  • Urban D (2012) Food habits of Pacific cod and walleye pollock in the northern Gulf of Alaska. Mar Ecol Progr Ser 469:215–222

    Article  Google Scholar 

  • Wall-Palmer D, Burridge AK, Goetze E, Stokvis FR, Janssen AW, Mekkes L, Moreno-Alcántara M, Bednaršek N, Schiøtte T, Sørensen MV, Smart CW (2018) Biogeography and genetic diversity of the atlantid heteropods. Progr Oceanogr 160:1–25

    Article  Google Scholar 

  • Wassmann P (2015) Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean. Progr Oceanogr 139:1–12

    Article  Google Scholar 

  • Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Global Change Biol 17:1235–1249

    Article  Google Scholar 

  • Weydmann A, Przyłucka A, Lubośny M, Walczyńska KS, Serrão EA, Pearson GA, Burzyński A (2018) Postglacial expansion of the Arctic keystone copepod Calanus glacialis. Mar Biodiv 48:1027–1035

    Article  Google Scholar 

  • Wiebe PH, Bucklin A, Kaartvedt S, Røstad A, Blanco-Bercial L (2016) Vertical distribution and migration of euphausiid species in the Red Sea. J Plankton Res 38:888–903

    Article  CAS  Google Scholar 

  • Woodgate RA, Aagaard K, Swift JH, Smethie WM, Falkner KK (2007) Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. J Geophys Res 112:C02005

    Google Scholar 

  • WoRMS Editorial Board (2021) World register of marine species, available from http://www.marinespecies.org, accessed 2023–04–3–13, https://doi.org/10.14284/170

Download references

Acknowledgements

This study is a product of the NSF Research Experiences for Undergraduate (REU) Program at Mystic Aquarium and University of Connecticut, with leadership from Michael Finiguerra (University of Connecticut, Groton, CT) and Tracy Romano (Mystic Aquarium, Mystic CT). We acknowledge contributions of the Scientific Committee on Oceanic Research (SCOR) Working Group 157, MetaZooGene: Toward a new global view of marine zooplankton biodiversity based on DNA metabarcoding and reference DNA sequence databases (https://metazoogene.org/ and https://scor-int.org/group/157/). Expert technical and bioinformatics assistance was provided by professional staff at the Institute for Systems Genomics, University of Connecticut (Storrs, CT, USA), including Bo Reese and Lu Li at the UConn Center for Genome Innovation (CGI).

Samples were collected during research cruises of the R/V G.O. Sars (2013107) as part of the EuroBASIN Program and R/V Helmer Hanssen (HH-2014) during the SI_Arctic Program; AB and PHW acknowledge the efforts of the ship captains, crew, and shipboard scientists. CJA and RGC acknowledge the people and organizations that supported the fieldwork of the US Arctic Observing Network (AON) Program, especially S.R. Okkonen and P. Alatalo, Captain Bill Kopplin and crews of the R/V Annika Marie and R/V Ukpik, NSF logistics providers in Utqiaġvik, Alaska, colleagues at the North Slope Borough Department of Wildlife Management, the Barrow Whaling Captains Association, and undergraduate research assistants, M. Dennis, I. McCoy, and K. Terpis, who helped with the sample processing at the University of Rhode Island (URI).

Funding

This study was funded by the National Science Foundation (NSF Grants #1658663, #1658742, #OCE-1840868, and #DBI-0215393), US Arctic Observing Network (Grants #PLR-1023331 and #PLR-1022139), and EPSCoR (Grants #0554548 and #EPS-1004057). Additional funding was provided by US Department of Agriculture (Grants #2002–34438-12688 and #2003–34438-13111); Arctic Ocean Ecosystem Project (Grant #RCN228896); and EuroBASIN Program (Contract #264933).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Bucklin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable. The study is compliant with CBD and Nagoya protocols.

Data availability

The datasets generated during and/or analyzed during the current study are available from NCBI GenBank Nucleotide Database (https://www.ncbi.nlm.nih.gov/nucleotide/), the MetaZooGene Barcode Atlas and Database (MZGdb; https://metazoogene.org/MZGdb), and the NSF Arctic Data Center (https://arcticdata.io/).

Author contribution

AB, JMQ, and PB-L conceived and designed research. PB-L, MR, AF, and CG carried out laboratory analysis. CJA, RGC, PHW, and AB carried out field work. JMQ and PHW analyzed the data. AB wrote the manuscript. All authors read and approved the final manuscript.

Additional information

Communicated by J. Renz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Topical Collection Discovering the water column: integrated taxonomic approaches for measuring marine pelagic biodiversity.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Supplementary file2 (XLSX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucklin, A., Questel, J.M., Batta-Lona, P.G. et al. Population genetic diversity and structure of the euphausiids Thysanoessa inermis and T. raschii in the Arctic Ocean: inferences from COI barcodes. Mar. Biodivers. 53, 70 (2023). https://doi.org/10.1007/s12526-023-01371-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-023-01371-y

Keywords

Navigation