Skip to main content
Log in

A review on modern variants of the partitioned pipe mixer: designs, performances, and applications

  • Review Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of the partitioned pipe mixer (PPM) and its design variants: the barrier-embedded partitioned pipe mixer (BPPM) and the groove-embedded partitioned pipe mixer (GPPM). These mixers utilize chaotic advection as their mixing mechanism in the laminar flow regime. The review first focuses on the flow and mixing characteristics of these mixers, considering the influence of the operating conditions and design variables. The advantages and flexibility of the BPPM and GPPM over the original PPM are highlighted. The investigation covers mixing performance in both the creeping and non-creeping flow regimes. In addition, this review examines the impact of thixotropy and fluid inertia on mixing performance of the mixers, revealing irregular trends. It emphasizes the importance of carefully considering thixotropy and inertia when selecting appropriate mixing protocols and operating conditions. Furthermore, the potential use of chaotic mixing by the BPPM in filtration processes is briefly reviewed. In conclusion, the review summarizes the limitations of the previous studies and suggesting future research directions. Further studies are expected to explore the potential of these types of mixers in improving mixing performance in various industries, particularly those dealing with rheologically complex fluids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Valdés JP, Kahouadji L, Matar OK (2022) Current advances in liquid–liquid mixing in static mixers: a review. Chem Eng Res Des 177:694–731. https://doi.org/10.1016/j.cherd.2021.11.016

    Article  CAS  Google Scholar 

  2. Cullen PJ (2009) Food mixing: principles and applications. Wiley, Blackwell, London

    Book  Google Scholar 

  3. Ottino JM, Wiggins S (2004) Introduction: mixing in microfluidics. Philos Trans R Soc London A 362:923–935. https://doi.org/10.1098/rsta.2003.1355

    Article  Google Scholar 

  4. Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines (Basel) 1:82–111. https://doi.org/10.3390/mi1030082

    Article  Google Scholar 

  5. Lee CY, Chang CL, Wang YN, Fu LM (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263–3287. https://doi.org/10.3390/ijms12053263

    Article  CAS  Google Scholar 

  6. Harnby N, Edwards MF, Nienow AW (1997) Mixing in the process industries. Butterworth-Heinemann, Oxford

    Google Scholar 

  7. Sundararaj U, Macosko CW, Nakayama A, Inoue T (1995) Milligrams to kilograms: an evaluation of mixers for reactive polymer blending. Polym Eng Sci 35:100–114. https://doi.org/10.1002/pen.760350113

    Article  CAS  Google Scholar 

  8. Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, Cambridge

    Google Scholar 

  9. Oldshue J (1983) Fluid mixing technology. McGraw-Hill, New York

    Google Scholar 

  10. Sritharan K, Strobl CJ, Schneider MF, Wixforth A, Guttenberg Z (2006) Acoustic mixing at low Reynold’s numbers. Appl Phys Lett 88:054102. https://doi.org/10.1063/1.2171482

    Article  CAS  Google Scholar 

  11. Naik-Nimbalkar VS, Patwardhan AW, Banerjee I, Padmakumar G, Vaidyanathan G (2010) Thermal mixing in T-junctions. Chem Eng Sci 65:5901–5911. https://doi.org/10.1016/j.ces.2010.08.017

    Article  CAS  Google Scholar 

  12. Jalaal M, Khorshidi B, Esmaeilzadeh E (2013) Electrohydrodynamic (EHD) mixing of two miscible dielectric liquids. Chem Eng J 219:118–123. https://doi.org/10.1016/j.cej.2012.10.062

    Article  CAS  Google Scholar 

  13. Paul EL, Atiemo-Obeng VA, Kresta SM (2003) Handbook of industrial mixing. John Wiley & Sons Inc, New Jersey

    Book  Google Scholar 

  14. Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215. https://doi.org/10.1039/a902237f

    Article  CAS  Google Scholar 

  15. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49:578–584. https://doi.org/10.1002/aic.690490305

    Article  CAS  Google Scholar 

  16. Hardt S, Pennemann H, Schönfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2:237–248. https://doi.org/10.1007/s10404-005-0071-6

    Article  CAS  Google Scholar 

  17. Ghanem A, Lemenand T, Della Valle D, Peerhossaini H (2014) Static mixers: mechanisms, applications, and characterization methods—a review. Chem Eng Res Des 92:205–228. https://doi.org/10.1016/j.cherd.2013.07.013

    Article  CAS  Google Scholar 

  18. Meijer HEH, Singh MK, Anderson PD (2012) On the performance of static mixers: a quantitative comparison. Prog Polym Sci 37:1333–1349. https://doi.org/10.1016/j.progpolymsci.2011.12.004

    Article  CAS  Google Scholar 

  19. Thakur RK, Vial Ch, Nigam KDP, Nauman EB, Djelveh G (2003) Static mixers in the process industries—a review. Chem Eng Res Des 81:787–826. https://doi.org/10.1205/026387603322302968

    Article  CAS  Google Scholar 

  20. Kumar V, Shirke V, Nigam KDP (2008) Performance of Kenics static mixer over a wide range of Reynolds number. Chem Eng J 139:284–295. https://doi.org/10.1016/j.cej.2007.07.101

    Article  CAS  Google Scholar 

  21. Pustelnik P (1986) Investigation of residence time distribution in Kenics static mixers. Chem Eng Process 20:147–154. https://doi.org/10.1016/0255-2701(86)85019-x

    Article  CAS  Google Scholar 

  22. Hobbs DM, Muzzio FJ (1997) The Kenics static mixer: a three-dimensional chaotic flow. Chem Eng J 67:153–166. https://doi.org/10.1016/S1385-8947(97)00013-2

    Article  CAS  Google Scholar 

  23. Hobbs DM, Muzzio FJ (1998) Reynolds number effects on laminar mixing in the Kenics static mixer. Chem Eng J 70:93–104. https://doi.org/10.1016/S1385-8947(98)00065-5

    Article  CAS  Google Scholar 

  24. Kemblowski Z, Pustelnik P (1988) Residence time distribution of a power–law fluid in Kenics static mixers. Chem Eng Sci 43:473–478. https://doi.org/10.1016/0009-2509(88)87008-8

    Article  CAS  Google Scholar 

  25. Singh MK, Kang TG, Anderson PD, Meijer HEH, Hrymak AN (2009) Analysis and optimization of low-pressure drop static mixers. AIChE J 55:2208–2216. https://doi.org/10.1002/aic.11846

    Article  CAS  Google Scholar 

  26. Tanguy PA, Lacroix R, Choplin L (1990) Three-dimensional modelling of the flow through a LPD Dow-Ross static mixer. In: Oliver DR (ed) Third European rheology conference and golden jubilee meeting of the British society of rheology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0781-2_161

  27. Zalc JM, Szalai ES, Muzzio FJ, Jaffer S (2002) Characterization of flow and mixing in an SMX static mixer. AIChE J 48:427–436. https://doi.org/10.1002/aic.690480303

    Article  CAS  Google Scholar 

  28. Singh MK, Anderson PD, Meijer HEH (2009) Understanding and optimizing the SMX static mixer. Macromol Rapid Commun 30:362–376. https://doi.org/10.1002/marc.200800710

    Article  CAS  Google Scholar 

  29. Liu S, Hrymak AN, Wood PE (2006) Laminar mixing of shear thinning fluids in a SMX static mixer. Chem Eng Sci 61:1753–1759. https://doi.org/10.1016/j.ces.2005.10.026

    Article  CAS  Google Scholar 

  30. Rauline D, Le Blévec JM, Bousquet J, Tanguy PA (2000) A comparative assessment of the performance of the Kenics and SMX static mixers. Chem Eng Res Des 78:389–396

    Article  CAS  Google Scholar 

  31. Jegatheeswaran S, Ein-Mozaffari F, Wu J (2018) Process intensification in a chaotic SMX static mixer to achieve an energy-efficient mixing operation of non-Newtonian fluids. Chem Eng Process 124:1–10. https://doi.org/10.1016/j.cep.2017.11.018

    Article  CAS  Google Scholar 

  32. Kang TG, Singh MK, Kwon TH, Anderson PD (2008) Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer. Microfluid Nanofluid 4:589–599. https://doi.org/10.1007/s10404-007-0206-z

    Article  Google Scholar 

  33. Kang TG, Hulsen MA, Anderson PD, den Toonder JMJ, Meijer HEH (2007) Chaotic advection using passive and externally actuated particles in a serpentine channel flow. Chem Eng Sci 62:6677–6686. https://doi.org/10.1016/j.ces.2007.07.044

    Article  CAS  Google Scholar 

  34. Metcalfe G, Rudman M, Brydon A, Graham LJW, Hamilton R (2006) Composing chaos: an experimental and numerical study of an open duct mixing flow. AIChE J 52:9–28. https://doi.org/10.1002/AIC.10640

    Article  CAS  Google Scholar 

  35. Khakhar DV, Franjione JG, Ottino JM (1987) A case study of chaotic mixing in deterministic flows: the partitioned-pipe mixer. Chem Eng Sci 42:2909–2926. https://doi.org/10.1016/0009-2509(87)87056-2

    Article  CAS  Google Scholar 

  36. Jung SY, Ahn KH, Kang TG, Park GT, Kim SU (2017) Chaotic mixing in a barrier-embedded partitioned pipe mixer. AIChE J 64:717–729. https://doi.org/10.1002/aic.15929

    Article  CAS  Google Scholar 

  37. Jung HI, Park JE, Jung SY, Kang TG, Ahn KH (2020) Flow and mixing characteristics of a groove-embedded partitioned pipe mixer. Korea Aust Rheol J 32:319–329. https://doi.org/10.1007/S13367-020-0030-5

    Article  CAS  Google Scholar 

  38. Mizuno Y, Funakoshi M (2002) Chaotic mixing due to a spatially periodic three-dimensional flow. Fluid Dyn Res 31:129–149. https://doi.org/10.1016/S0169-5983(02)00093-X

    Article  Google Scholar 

  39. Khakhar DV (1986) Fluid mechanics of laminar mixing: dispersion and chaotic flows. Dissertation, University of Massachusetts

  40. Meleshko VV, Galaktionov OS, Peters GWM, Meijer HEH (1999) Three-dimensional mixing in Stokes flow: the partitioned pipe mixer problem revisited. Eur J Mech B Fluids 18:783–792. https://doi.org/10.1016/s0997-7546(99)00120-x

    Article  Google Scholar 

  41. Kusch H, Ottino J (1992) Experiments on mixing in continuous chaotic flows. J Fluid Mech 236:319–348. https://doi.org/10.1017/S0022112092001435

    Article  CAS  Google Scholar 

  42. Jung HI, Jung SY, Kang TG, Ahn KH (2018) Numerical study on the mixing in a barrier-embedded partitioned pipe mixer (BPPM) for non-creeping flow conditions. Korea Aust Rheol J 30:227–238. https://doi.org/10.1007/s13367-018-0022-x

    Article  Google Scholar 

  43. Jung SY, Jung HI, Kang TG, Ahn KH (2020) Fouling mitigation in crossflow filtration using chaotic advection: a numerical study. AIChE J 66:e16792. https://doi.org/10.1002/aic.16792

    Article  CAS  Google Scholar 

  44. Jung SY, Park JE, Kang TG, Park JD (2022) Flow and mixing analysis of a thixotropic fluid in a barrier-embedded partitioned pipe mixer (BPPM): a numerical study. Int J Heat Mass Transf 184:122310. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122310

    Article  Google Scholar 

  45. Ling FH (1993) Chaotic mixing in a spatially periodic continuous mixer. Phys Fluids 5:2147–2160. https://doi.org/10.1063/1.858554

    Article  CAS  Google Scholar 

  46. Mizuno Y, Funakoshi M (2004) Chaotic mixing caused by an axially periodic steady flow in a partitioned-pipe mixer. Fluid Dyn Res 35:205–227. https://doi.org/10.1016/j.fluiddyn.2004.05.003/xml

    Article  Google Scholar 

  47. Mizuno Y, Funakoshi M (2005) Reynolds number dependences of velocity field and fluid mixing in partitioned-pipe mixer. J Phys Soc Jpn 74:1479–1489. https://doi.org/10.1143/jpsj.74.1479

    Article  CAS  Google Scholar 

  48. Williams C, Wakeman R (2000) Membrane fouling and alternative techniques for its alleviation. Membr Technol 2000:4–10. https://doi.org/10.1016/s0958-2118(00)80017-8

    Article  Google Scholar 

  49. Ho C, Zydney AL (2006) Overview of fouling phenomena and modeling approaches for membrane bioreactors. Sep Sci Technol 41:1231–1251. https://doi.org/10.1080/01496390600632297

    Article  CAS  Google Scholar 

  50. Cirillo AI, Tomaiuolo G, Guido S (2021) Membrane fouling phenomena in microfluidic systems: from technical challenges to scientific opportunities. Micromachines (Basel) 12:820. https://doi.org/10.3390/mi12070820

    Article  Google Scholar 

  51. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  52. Barnes HA (1997) Thixotropy—a review. J Nonnewton Fluid Mech 70:1–33. https://doi.org/10.1016/S0377-0257(97)00004-9

    Article  CAS  Google Scholar 

  53. Mewis J (1979) Thixotropy—a general review. J Nonnewton Fluid Mech 6:1–20. https://doi.org/10.1016/0377-0257(79)87001-9

    Article  CAS  Google Scholar 

  54. Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Nonnewton Fluid Mech 139:21–30. https://doi.org/10.1016/J.JNNFM.2006.06.002

    Article  CAS  Google Scholar 

  55. Larson RG, Wei Y (2019) A review of thixotropy and its rheological modeling. J Rheol 63:477–501. https://doi.org/10.1122/1.5055031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (Nos. 2022R1C1C1006820, 2022R1A4A5033554, 2021M3H4A6A01041234, and 2022R1A2C1007886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gon Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.Y., Kang, T.G. A review on modern variants of the partitioned pipe mixer: designs, performances, and applications. Korea-Aust. Rheol. J. 35, 229–247 (2023). https://doi.org/10.1007/s13367-023-00069-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00069-8

Keywords

Navigation