Skip to main content
Log in

Abstract

We study lines on smooth cubic surfaces over the field of p-adic numbers, from a theoretical and computational point of view. Segre showed that the possible counts of such lines are 0, 1, 2, 3, 5, 7, 9, 15 or 27. We show that each of these counts is achieved. Probabilistic aspects are investigated by sampling both p-adic and real cubic surfaces from different distributions and estimating the probability of each count.We link this to recent results on probabilistic enumerative geometry. Some experimental results on the Galois groups attached to p-adic cubic surfaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In his work, Segre actually points out that his statement fails in characteristic 2, but this is not correct; see [7, Section 3.1].

  2. This was done prior to the appearance of McKean’s stronger result [7, Theorem 1.3].

  3. Using a Monte-Carlo method.

  4. The probability that a random surface has a certain number of lines is an integral.

  5. In the tables, we use the notation provided by Magma. In particular, \(F_q\) is the Frobenius group \({\mathbb {F}}_q \rtimes {\mathbb {F}}_q^{\times }\), and \(OD_{2^k}\) is the “other-dihedral” group \(C_{2^{k-1}} \rtimes C_2\) with \(C_2\) acting as \(2^{k-2} + 1\).

References

  1. Hartshorne, R.: Algebraic geometry. Graduate texts in mathematics, No. 52. Springer-Verlag, New York-Heidelberg, (1977)

  2. Manin, Y.I.: Cubic forms: algebra, geometry, arithmetic. North-Holland Mathematical Library, Vol. 4. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, (1974). Translated from the Russian by M. Hazewinkel

  3. Dolgachev, I.V.: Classical algebraic geometry. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  4. Cayley, A.: On the triple tangent planes of surfaces of the third order. Camb. Dublin Math. J 4, 118–138 (1849)

    Google Scholar 

  5. Schläfli, L.: An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface. Q. J. Math 2(55), 110 (1858)

    Google Scholar 

  6. Segre, B.: Le rette delle superficie cubiche nei corpi commutativi. Boll. Un. Mat. Ital. 3(4), 223–228 (1949)

    MathSciNet  MATH  Google Scholar 

  7. McKean, S.: Rational lines on smooth cubic surfaces, (2022). Preprint available at arXiv:2101.08217v3

  8. Loughran, D., Trepalin, A.: Inverse Galois problem for del Pezzo surfaces over finite fields. Math. Res. Lett. 27(3), 845–853 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickson, L.E.: Projective classification of cubic surfaces modulo 2. Ann. Math. (2), 16(1-4), 139–157 (1914/15)

  10. Kostlan, E.: On the distribution of roots of random polynomials. In: From topology to computation: proceedings of the smalefest (Berkeley, C, 1990), pp. 419–431. Springer, New York, (1993)

  11. Elsenhans, A.-S., Jahnel, J.: Moduli spaces and the inverse Galois problem for cubic surfaces. Trans. Am. Math. Soc. 367(11), 7837–7861 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bezanson, J., Edelman, A., Karpinski, S., Julia, V.B.S.: A fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  15. Panizzut, M., Sertöz, E.C., Sturmfels, B.: An octanomial model for cubic surfaces. Matematiche (Catania) 75(2), 517–536 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Ren, Q., Sam, S.V., Sturmfels, B.: Tropicalization of classical moduli spaces. Math. Comput. Sci. 8(2), 119–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maazouz, Y.E., Lerario, A.: A nonarchimedean version of Kostlan’s theorem, (2022). Preprint available at arXiv:2209.13634

  18. Manssour, R.A.E., Lerario, A.: Probabilistic enumerative geometry over \(p\)-adic numbers: linear spaces on complete intersections. Annales Henri Lebesgue 5, 1329–1360 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhargava, M., Cremona, J., Fisher, T., Gajović, S.: The density of polynomials of degree \(n\) over \({\mathbb{Z}}_p\) having exactly \(r\) roots in \({\mathbb{Q}}_p\). Proc. Lond. Math. Soc, (2021)

  20. El Manssour, R.A., Belotti, M., Meroni, C.: Real lines on random cubic surfaces. Arnold Math. J. 7(4), 541–559 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Basu, S., Lerario, A., Lundberg, E., Peterson, C.: Random fields and the enumerative geometry of lines on real and complex hypersurfaces. Math. Ann. 374(3), 1773–1810 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Breiding, P., Timme, S.: HomotopyContinuation.jl: A package for homotopy continuation in Julia. In: International congress on mathematical software, pp. 458–465. Springer, (2018)

  23. Serre, J.P.: Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg

  24. Elsenhans, A.-S., Jahnel, J.: On plane quartics with a Galois invariant Cayley octad. Eur. J. Math. 5(4), 1156–1172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elsenhans, A.-S., Jahnel, J.: Plane quartics with a Galois-invariant Steiner hexad. Int. J. Number Theory 15(5), 1075–1109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Claus Fieker, Tom Fisher, Stevan Gajović, Marta Panizzut, Emre Sertöz and Bernd Sturmfels for valuable discussions. We also thank Avinash Kulkarni, Daniel Loughran and Jean Pierre Serre for their valuable comments on earlier versions of this manuscript. Finally, we thank the referee for suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enis Kaya.

Additional information

Communicated by Henrik Bachmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Manssour, R.A., El Maazouz, Y., Kaya, E. et al. Lines on p-adic and real cubic surfaces. Abh. Math. Semin. Univ. Hambg. 93, 149–162 (2023). https://doi.org/10.1007/s12188-023-00269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-023-00269-7

Keywords

Mathematics Subject Classification

Navigation