Skip to main content
Log in

Synthetic Biology: Major Principles and Current Trends of Development in Russia

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Synthetic biology is an interdisciplinary field of science and technology aimed at developing methods and approaches to design and construct living systems at different levels of their organization based on engineering principles. The work describes the main characteristics of synthetic biology, one of the most promising and interesting directions in the biological sciences. We review in detail the modern methods and approaches used by synthetic biologists to create new types of biological systems, their functional units, and components. Particular attention is paid to actions to stimulate the development of synthetic biology in Russia. This requires wider application of the process approach and engineering principles, the formation of a centralized depository of functional genetic elements, standardization of the components and procedures used, deeper analysis of the genomes of organisms from bioresource collections and the subsequent storage of information in the National Genomic Information Database, and intensification of the development of equipment for high-throughput DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. S. Tirard, Cahiers François Viète II-6/7, 137 (2015). https://doi.org/10.4000/cahierscfv.2968

    Article  Google Scholar 

  2. D. E. Cameron, C. J. Bashor, and J. J. Collins, Nat. Rev. Microbiol. 12, 381 (2014). https://doi.org/10.1038/nrmicro3239

    Article  CAS  Google Scholar 

  3. F. Meng and T. Ellis, Nat. Commun. 11, 5174 (2020). https://doi.org/10.1038/s41467-020-19092-2

    Article  CAS  Google Scholar 

  4. C. Guindani, L. C. Silva, S. Cao, et al., Angew. Chem. Int. Ed. 61, e202110855 (2022). https://doi.org/10.1002/anie.202110855

    Article  CAS  Google Scholar 

  5. J. C. Venter, J. I. Glass, C. A. Hutchison, and S. Vashee, Cell 185, 2708 (2022). https://doi.org/10.1016/j.cell.2022.06.046

    Article  CAS  Google Scholar 

  6. K. L. Garner, Essays Biochem. 65, 791 (2021). https://doi.org/10.1042/ebc20200059

    Article  CAS  Google Scholar 

  7. L. Marucci, M. Barberis, J. Karr, et al., Front. Bioeng. Biotechnol. 8 (2020). https://doi.org/10.3389/fbioe.2020.00942

  8. H. H. McAdams and L. Shapiro, Science 269, 650 (1995). https://doi.org/10.1126/science.7624793

    Article  CAS  Google Scholar 

  9. V. Singh, Syst. Synth. Biol. 8, 271 (2014). https://doi.org/10.1007/s11693-014-9154-6

    Article  Google Scholar 

  10. L. Buecherl, T. Mitchell, J. Scott-Brown, et al., J. Integr. Bioinform. 20, 20220058 (2023). https://doi.org/10.1515/jib-2022-0058

    Article  Google Scholar 

  11. A. Costello and A. H. Badran, Trends Biotechnol. 39, 59 (2021). https://doi.org/10.1016/j.tibtech.2020.05.013

    Article  CAS  Google Scholar 

  12. M.-E. Guazzaroni, R. Silva-Rocha, and R. J. Ward, Microb. Biotechnol. 8, 52 (2015). https://doi.org/10.1111/1751-7915.12146

    Article  CAS  Google Scholar 

  13. N. B. W. Macfarlane, J. Adams, E. L. Bennett, et al., iScience 25, 105423 (2022). https://doi.org/10.1016/j.isci.2022.105423

  14. Y. Zhang, W. Ding, Z. Wang, et al., Adv. Biol. 5, 2000252 (2021). https://doi.org/10.1002/adbi.202000252

    Article  CAS  Google Scholar 

  15. J. Fredens, K. Wang, D. de la Torre, et al., Nature 569, 514 (2019). https://doi.org/10.1038/s41586-019-1192-5

    Article  CAS  Google Scholar 

  16. F. Machens, S. Balazadeh, B. Mueller-Roeber, and K. Messerschmidt, Front. Bioeng. Biotechnol. 5, 63 (2017). https://doi.org/10.3389/fbioe.2017.00063

    Article  Google Scholar 

  17. C. M. Schmidt and C. D. Smolke, Cold Spring Harb. Perspect. Biol. 11, a032532 (2019). https://doi.org/10.1101/cshperspect.a032532

    Article  CAS  Google Scholar 

  18. S. Cui, X. Lv, X. Xu, et al., ACS Synth. Biol. 10, 1587 (2021). https://doi.org/10.1021/acssynbio.1c00073

    Article  CAS  Google Scholar 

  19. X. Lv, A. Hueso-Gil, X. Bi, et al., Curr. Opin. Biotechnol. 76, 102724 (2022). https://doi.org/10.1016/j.copbio.2022.102724

    Article  CAS  Google Scholar 

  20. D. Endy, Nature 438, 449 (2005). https://doi.org/10.1038/nature04342

    Article  CAS  Google Scholar 

  21. N. Gurdo, D. C. Volke, and P. I. Nikel, Trends Biotechnol. 40, 1148 (2022). https://doi.org/10.1016/j.tibtech.2022.03.004

    Article  CAS  Google Scholar 

  22. D. A. Hall, N. A. Manabhan, C. Choi, et al., in Proceedings of IEEE International Solid- State Circuits Conference (ISSCC) 2022, Vol. 65, p. 1. https://doi.org/10.1109/ISSCC42614.2022.9731770

  23. R. R. Gallagher, Z. Li, A. O. Lewis, and F. J. Isaacs, Nat. Protoc. 9, 2301 (2014). https://doi.org/10.1038/nprot.2014.082

    Article  CAS  Google Scholar 

  24. A. Deng, Z. Sun, T. Wang, et al., Front. Microbiol. 12, 714449 (2021). https://doi.org/10.3389/fmicb.2021.714449

    Article  Google Scholar 

  25. L.-F. Song, Z.-H. Deng, Z.-Y. Gong, et al., Front. Bioeng. Biotechnol. 9, 89797 (2021). https://doi.org/10.3389/fbioe.2021.689797

    Article  Google Scholar 

  26. A. Hoose, R. Vellacott, M. Storch, et al., Nat. Rev. Chem. 7, 144 (2023). https://doi.org/10.1038/s41570-022-00456-9

    Article  CAS  Google Scholar 

  27. V. K. Mutalik, J. C. Guimaraes, G. Cambray, et al., Nat. Methods 10, 347 (2013). https://doi.org/10.1038/nmeth.2403

    Article  CAS  Google Scholar 

  28. www.synbiobeta.com

  29. https://igem.org

  30. K. J. Blight, A. A. Kolykhalov, and C. M. Rice, Science 290, 1972 (2000). https://doi.org/10.1126/science.290.5498.1972

    Article  CAS  Google Scholar 

  31. I. S. Pretorius and J. D. Boeke, FEMS Yeast Res. 18, foy032 (2018). https://doi.org/10.1093/femsyr/foy032

    Article  CAS  Google Scholar 

  32. M. J. Lajoie, A. J. Rovner, D. B. Goodman, et al., Science 342, 357 (2013). https://doi.org/10.1126/science.1241459

    Article  CAS  Google Scholar 

  33. H. H. Wang, F. J. Isaacs, P. A. Carr, et al., Nature 460, 894 (2009). https://doi.org/10.1038/nature08187

    Article  CAS  Google Scholar 

  34. M. M. Becker, R. L. Graham, E. F. Donaldson, et al., Proc. Nat. Acad. Sci. 105, 19944 (2008). https://doi.org/10.1073/pnas.0808116105

    Article  Google Scholar 

  35. D. G. Gibson, J. I. Glass, C. Lartigue, et al., Science 329, 52 (2010). https://doi.org/10.1126/science.1190719

    Article  CAS  Google Scholar 

  36. K. S. Boles, K. Kannan, J. Gill, et al., Nat. Biotechnol. 35, 672 (2017). https://doi.org/10.1038/nbt.3859

    Article  CAS  Google Scholar 

  37. J. Champer, A. Buchman, and O. S. Akbari, Nat. Rev. Genet. 17, 146 (2016). https://doi.org/10.1038/nrg.2015.34

    Article  CAS  Google Scholar 

  38. C. E. Hodgman and M. C. Jewett, Metab. Eng. 14, 261 (2012). https://doi.org/10.1016/j.ymben.2011.09.002

    Article  CAS  Google Scholar 

  39. M. Ermakova, F. R. Danila, R. T. Furbank, and S. von Caemmerer, Plant J. 101, 940 (2020). https://doi.org/10.1111/tpj.14562

    Article  CAS  Google Scholar 

  40. R. Zilinskas, Nat. Biotechnol. 2, 610 (1984). https://doi.org/10.1038/nbt0784-610

    Article  Google Scholar 

  41. N. Mao, N. Aggarwal, C. L. Poh, et al., Adv. Genet. 2, e10038 (2021). https://doi.org/10.1002/ggn2.10038

    Article  Google Scholar 

  42. N. Gunitseva, M. Evteeva, A. Borisova, et al., Int. J. Mol. Sci. 24, 6894 (2023). https://doi.org/10.3390/ijms24086894

    Article  CAS  Google Scholar 

  43. R. Vasilev, N. Gunitseva, R. Shebanova, et al., Int. J. Mol. Sci. 23, 9289 (2022). https://doi.org/10.3390/ijms23169289

    Article  CAS  Google Scholar 

  44. National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology (Natl. Academies Press, Washington, DC, 2018).

  45. P. Opgenorth, Z. Costello, T. Okada, et al., ACS Synth. Biol. 8, 1337 (2019). https://doi.org/10.1021/acssynbio.9b00020

    Article  CAS  Google Scholar 

  46. P. Carbonell, A. J. Jervis, C. J. Robinson, et al., Commun. Biol. 1, 1 (2018). https://doi.org/10.1038/s42003-018-0076-9

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Center “Kurchatov Institute” (order no. 91 dated January 20, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Borisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrushev, M.V., Borisova, A.A. & Namsaraev, Z.B. Synthetic Biology: Major Principles and Current Trends of Development in Russia. Nanotechnol Russia 18, 337–344 (2023). https://doi.org/10.1134/S2635167623700210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623700210

Navigation