Skip to main content
Log in

Event-triggered coupled control of unmanned surface vehicle (USV) for setpoint tracking with linear event threshold

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In a competitive scenario, to effectively utilise the resources and battery power, the communication and control update has to be minimised to a great extent. In this work, an event-triggered coupled controller with linearly varying event threshold is proposed for setpoint tracking of USV, which optimally utilises the resources with the help of a simple interactive control loop in a classical control framework. The gains of coupled controller are optimised using differential evolution (DE) algorithm. This research analyses the effect of various classes of event thresholds on the number of triggering instants and proposes a linear event threshold (LET) for a reduced number of control triggers. In addition, the relative percentage difference in energy consumption of the USV for different cases of event-triggered control are compared with that of the USV without event-triggered control. The simulation results establish the superiority of the linear event-triggered control in reducing the control update significantly with satisfactory performance in setpoint tracking without compromising stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu Z, Zhang LY, Yu X, Yuan C (2016) Unmanned surface vehicles: an overview of developments and challenges. Annu Rev Control 41:71–93

    Article  Google Scholar 

  2. Heins PH, Jones BL, Taunton DJ (2017) Design and validation of an unmanned surface vehicle simulation model. Int J Appl Math Model 48:749–774

    Article  Google Scholar 

  3. Huang J, Wen C, Wang W, Song Y-D (2015) Global stable tracking control of underactuated ships with input saturation. Syst Control Lett 85:1–7

    Article  MathSciNet  MATH  Google Scholar 

  4. Vagale A, Oucheikh R, Bye RT, Osen OL, Fossen TI (2021) Path planning and collision avoidance for autonomous surface vehicles I: a review. Mar Sci Technol] 26:1292–1306

    Article  Google Scholar 

  5. Reyhanoglu M (1997) Exponential stabilization of an underactuated autonomous surface vessel. Automatica 33:2249–2254

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong W, Guo Y (2005) Global time-varying stabilization of underactuated surface vessel. IEEE Trans Autom Control 50:859–864

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng Y, Zhang X, Im N, Zhang G, Zhang Q (2020) Model-based event triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Trans Neural Netw Learn Syst 31:4001–4014

    Article  MathSciNet  Google Scholar 

  8. Huang H, Gong M, Zhuang Y, Sharma S, Xu D (2019) A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations. Ocean Eng 175:217–222

    Article  Google Scholar 

  9. Koshy R, Jayasree PR (2017) Comparative study of h-infinity and sliding mode control for a manipulator with oscillatory-base. 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). Kollam, India, pp 1–6

    Google Scholar 

  10. Xingru Q, Xiao L, Yuanhang H, Ye L, Rubo Z (2021) Path following control of unmanned surface vehicles with unknown dynamics and unmeasured velocities. Mar Sci Technol 26:395–407

    Article  MATH  Google Scholar 

  11. Sruthy V, Raj B, Preetha PK (2021) An offshore floating charging station for electric ships: accessibility enhancement schemes for recharging. Ships Offsh Struct 16:1143–1150

    Article  Google Scholar 

  12. Mohan S, Nandagopal JL, Amritha S (2018) Coupled dynamic control of unicycle robot using integral linear quadratic regulator and sliding mode controller. Mater Today Proceed 5:1447–1454

    Article  Google Scholar 

  13. Lv C, Yu H, Chi J, Xu T, Zang H, Jiang H, Zhang Z (2019) A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Eng 176(10):222–230

    Article  Google Scholar 

  14. Satheesh J, Nair A.P, M, D, A, C, Mahesh G, Jayasree P.R (2020) Wireless communication based water surface cleaning boat. In: 2020 4th IEEE International Conference on Trends in Electronics and Informatics (ICOEI), pp. 716–720

  15. Do K.D, Pan J (2009) Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Adv Ind Control

  16. Ghommam J, Mnif F, Benali A, Derbel N (2006) Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Trans Control Syst Technol 14(6):1150–1157

    Article  Google Scholar 

  17. Marchand N, Durand S, Castellanos JFG (2013) A general formula for event-based stabilization of nonlinear systems. IEEE Trans Automat Control 58(5):1332–1337

    Article  MATH  Google Scholar 

  18. Dhanya S.L, Vivek A, Gopinath S (2017) Lateral control of an autonomous vehicle based on pure pursuit algorithm. In: 2017 IEEE International Conference on Technological Advancements in Power and Energy (TAP Energy), 2017

  19. Katayama H (2010) Nonlinear sampled-data stabilization of dynamically positioned ships. IEEE Trans Control Syst Technol 18(2):463–468

    Article  Google Scholar 

  20. Katayama H, Aoki H (2014) Straight-line trajectory tracking control for sampled-data underactuated ships. IEEE Trans Control Syst Technol 22(4):1638–1645

    Article  Google Scholar 

  21. Li M, Li T, Gao X, Shan Q, PhilipChen CL, Xiao Y (2020) Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence. Neurocomputing 379(3):203–213

    Article  Google Scholar 

  22. Deng Y, Zhang X, Im N, Zhang G, Zhang Q (2019) Event-triggered robust fuzzy path following control for underactuated ships with input saturation. Ocean Eng 186:106–122

    Article  Google Scholar 

  23. Zou Y, Su X, Niu Y (2017) Event-triggered distributed predictive control for the cooperation of multi-agent systems. IET Control Theory Appl 11(1):10–16

    Article  MathSciNet  Google Scholar 

  24. Lin L, Cao J, Zhu S, Shi P (2021) Minimum-time and minimum-triggering impulsive stabilization for multi-agent systems over finite fields. Syst Control Lett 155:1–12

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazenc F, Malisoff M, Barbalata C, Jiang Z-P (2022) Event-triggered control for linear time-varying systems using a positive systems approach. Syst Control Lett 161:1–10

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang G, Yao M, Xu J, Zhang W (2020) Robust neural event-triggered control for dynamic positioning ships with actuator faults. Ocean Eng 207:1–12

    Article  Google Scholar 

  27. Chengxing L, Haisheng Y, Zhili H, Lei L, Jieru C (2018) Speed and heading control of an unmanned surface vehicle based on state error pch principle. Math Probl Eng 2018 (1):1–9

    MathSciNet  MATH  Google Scholar 

  28. Rabi M, H.Johansson K (2009) Scheduling packets for event-triggered control. In: 2009 European Control Conference (ECC), pp. 3779–3784

  29. Qin Z, Lin Z, Yang D, Li P (2017) A task-based hierarchical control strategy for autonomous motion of an unmanned surface vehicle swarm. Appl Ocean Res 65:251–261

    Article  Google Scholar 

  30. Qin Z, Lin Z, Yang D, Li P (2018) Robust adaptive trajectory tracking control of underactuated surface vessel in fields of marine practice. Mar Sci Technol 23(4):950–957

    Article  Google Scholar 

  31. Deepthi M, Ravikumarpandi V, Nair MG, Jamasb T, Thakur T (2021) Net zero energy in a residential building using heuristic optimization solution. Control Autom Electr Syst 32:458–471

    Article  Google Scholar 

  32. Wu W, Wang D, Lv M, Jiang J, Liu L, Peng Z (2020) Event-triggered LOS guidance for path following of an unmanned surface vehicle over wireless network. In: Proceedings of the 39th Chinese Control Conference, pp. 4475–4480

  33. Garcia E, Cao Y, Casbeer DW (2017) Periodic event-triggered synchronization of linear multi-agent systems with communication delays. IEEE Trans Autom Control 62:366–371

    Article  MathSciNet  MATH  Google Scholar 

  34. Challagundla S, Chitraganti S, Aberkane S (2019) Event based state estimation under the presence of multiplicative measurement noise. IEEE Control System Letters 3(3):625–630

    Article  MathSciNet  Google Scholar 

  35. Tabuada P (2007) Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control 52(9):1680–1685

    Article  MathSciNet  MATH  Google Scholar 

  36. Borgers DP, Heemels WPMH (2014) Event-separation properties of event-triggered control systems. IEEE Trans Autom Control 59(10):2644–2656

    Article  MathSciNet  MATH  Google Scholar 

  37. Touzout W, Benmoussa Y, Benazzouz D, Moreac E, Diguet J-P (2021) Unmanned surface vehicle energy consumption modelling under various realistic disturbances integrated into simulation environment. Ocean Eng 222:1–15

    Article  Google Scholar 

  38. Xiangyi Z, Xuanfang Y (2015) Research on wave disturbance in integrated control system. 2015 Chinese Automation Congress (CAC). Wuhan, China, pp 1533–1538

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ravikumar Pandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasree, P.R., Pandi, V.R., El din, H.Z. et al. Event-triggered coupled control of unmanned surface vehicle (USV) for setpoint tracking with linear event threshold. J Mar Sci Technol 28, 819–831 (2023). https://doi.org/10.1007/s00773-023-00959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-023-00959-0

Keywords

Navigation