Skip to main content
Log in

Quartic congruences and eta products

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Let \(a_{15}(n),a_{20}(n)\) and \(a_{24}(n)\) be defined by

$$\begin{aligned} q\prod _{k=1}^{\infty }(1-q^{k})(1-q^{3k})(1-q^{5k})(1-q^{15k})= & {} \sum \limits _{n=1}^{\infty }a_{15}(n)q^n,\\ q\prod _{k=1}^{\infty }(1-q^{2k})^2(1-q^{10k})^2= & {} \sum \limits _{n=1}^{\infty }a_{20}(n)q^n,\\ q\prod _{k=1}^{\infty }(1-q^{2k})(1-q^{4k})(1-q^{6k})(1-q^{12k})= & {} \sum \limits _{n=1}^{\infty }a_{24}(n)q^n \quad (|q|<1), \end{aligned}$$

and let \(p>3\) be a prime. In this paper, for \(p\equiv 3\ (\textrm{mod}\ 4)\) we reveal the connection between \(a_{20}(p)\) and residue-counts of \(x^4-4x^2+4x\) modulo p as x runs over \(0,1,\ldots ,p-1\), and the connection between \(a_{24}(p)\) and residue-counts of \(x^3+c/x\) modulo p as x runs over \(1,2,\ldots ,p-1\), where c is an integer not divisible by p. We also deduce the congruences for \(a_{15}(p),a_{24}(p)\) modulo 16 and \(a_{20}(p)\) modulo 4, and pose some analogous conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaca, A.: Representations by quaternary quadratic forms with coefficients \(1,3,5\) or \(15\). Integers 18, A12 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Alaca, A., Alaca, S., Aygin, Z.S.: Eta quotients, Eisenstein series and elliptic curves. Integers 18, A85 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Alaca, A., Alaca, S., Lemire, M.F., Williams, K.S.: Nineteen quaternary quadratic forms. Acta Arith. 130, 277–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alaca, A., Alaca, S., Williams, K.S.: On the quaternary forms \(x^2+y^2+z^2+5t^2\), \(x^2+y^2+5z^2+5t^2\) and \(x^2+5y^2+5z^2+5t^2\). J. Algebra Number Theory Appl. 9, 37–53 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Atkin, A.O.L., Li, W.-C.: Twists of newforms and pseudo-eigenvalues of \(W\)-operators. Invent. Math. 48, 221–243 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)

    MATH  Google Scholar 

  7. Diamond, F., Shurman, J.: A First Course in Modular Forms. Springer, New York (2005)

    MATH  Google Scholar 

  8. Evink, T., Helminck, P.A.: Tribonacci numbers and primes of the form \(p=x^2+11y^2\). Math. Slovaca 69, 521–532 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Honda, T., Miyawaki, I.: Zeta-functions of elliptic curves of 2-power conductor. J. Math. Soc. Jpn. 26, 362–373 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kilford, L.J.: Modular Forms: A Classical and Computational Introduction, p. 236. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  11. Kim, D., Koo, J.K., Park, Y.K.: On the elliptic curves modulo \(p\). J. Number Theory 128, 945–953 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Köhler, G.: On two of Liouville’s quaternary forms. Arch. Math. 54, 465–473 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Martin, Y., Ono, K.: Eta-quotients and elliptic curves. Proc. Am. Math. Soc. 125, 3169–3176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moreno, C.J., Wagstaff, S.S., Jr.: Sums of Squares of Integers. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  15. Sun, Z.H.: Cubic and quartic congruences modulo a prime. J. Number Theory 102, 41–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, Z.H.: On the number of incongruent residues of \(x^4+ax^2+bx\) modulo \(p\). J. Number Theory 119, 210–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, Z.H.: Legendre polynomials and supercongruences. Acta Arith. 159, 169–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, Z.H.: The number of representations of \(n\) as a linear combination of triangular numbers. Int. J. Number Theory 15, 1191–1218 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, Z.H., Williams, K.S.: On the number of representations of \(n\) by \(ax^2+ bxy+cy^2\). Acta Arith. 122, 101–171 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, Z.H., Williams, K.S.: Ramanujan identities and Euler products for a type of Dirichlet series. Acta Arith. 122, 349–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, M., Sun, Z.H.: On the number of representations of n as a linear combination of four triangular numbers II. Int. J. Number Theory 13, 593–617 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their useful comments and suggestions. In particular, one referee suggests adding Corollary 3.1, and another referee suggests considering the congruences for \(a_{14}(p)\) and \(a_{15}(p)\), where \(p>7\) is a prime. Zhi-Hong Sun was supported by the National Natural Science Foundation of China (Grant no. 12271200). Dongxi Ye was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant no. 2023A1515010298) and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant no. 22qntd2901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Sun.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by Amir Akbary.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZH., Ye, D. Quartic congruences and eta products. Bull. Iran. Math. Soc. 49, 67 (2023). https://doi.org/10.1007/s41980-023-00810-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-023-00810-7

Keywords

Mathematics Subject Classification

Navigation