Semin Respir Crit Care Med 2023; 44(06): 810-825
DOI: 10.1055/s-0043-1772754
Review Article

Pulmonary Hypertension Associated with Left Heart Disease

Claudia Baratto
1   Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, Milano, Italy
,
Sergio Caravita
1   Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Ospedale San Luca, Milano, Italy
2   Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Bergamo, Italy
,
Jean-Luc Vachiéry
3   Department of Cardiology, HUB Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
4   European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Germany
› Author Affiliations

Abstract

Pulmonary hypertension (PH) is a common complication of diseases affecting the left heart, mostly found in patients suffering from heart failure, with or without preserved left ventricular ejection fraction. Initially driven by a passive increase in left atrial pressure (postcapillary PH), several mechanisms may lead in a subset of patient to significant structural changes of the pulmonary vessels or a precapillary component. In addition, the right ventricle may be independently affected, which results in right ventricular to pulmonary artery uncoupling and right ventricular failure, all being associated with a worse outcome. The differential diagnosis of PH associated with left heart disease versus pulmonary arterial hypertension (PAH) is especially challenging in patients with cardiovascular comorbidities and/or heart failure with preserved ejection fraction (HFpEF). A stepwise approach to diagnosis is proposed, starting with a proper clinical multidimensional phenotyping to identify patients in whom hemodynamic confirmation is deemed necessary. Provocative testing (exercise testing, fluid loading, or simple leg raising) is useful in the cath laboratory to identify patients with abnormal response who are more likely to suffer from HFpEF. In contrast with group 1 PH, management of PH associated with left heart disease must focus on the treatment of the underlying condition. Some PAH-approved targets have been unsuccessfully tried in clinical studies in a heterogeneous group of patients, some even leading to an increase in adverse events. There is currently no approved therapy for PH associated with left heart disease.



Publication History

Article published online:
14 September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Humbert M, Kovacs G, Hoeper MM. et al; ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43 (38) 3618-3731
  • 2 Fayyaz AU, Edwards WD, Maleszewski JJ. et al. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation 2018; 137 (17) 1796-1810
  • 3 Naeije R, Gerges M, Vachiery JL, Caravita S, Gerges C, Lang IM. Hemodynamic phenotyping of pulmonary hypertension in left heart failure. Circ Heart Fail 2017; 10 (09) e004082
  • 4 Vachiéry JL, Tedford RJ, Rosenkranz S. et al. Pulmonary hypertension due to left heart disease. Eur Respir J 2019; 53 (01) 1801897
  • 5 Bosch L, Lam CSP, Gong L. et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 2017; 19 (12) 1664-1671
  • 6 Obokata M, Reddy YNV, Melenovsky V, Pislaru S, Borlaug BA. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J 2019; 40 (08) 689-697
  • 7 Baratto C, Caravita S, Corbetta G. et al. Impact of severe secondary tricuspid regurgitation on rest and exercise hemodynamics of patients with heart failure and a preserved left ventricular ejection fraction. Front Cardiovasc Med 2023; 10: 1061118
  • 8 Caravita S, Baratto C, Filippo A. et al. Shedding light on latent pulmonary vascular disease in heart failure with preserved ejection fraction. JACC Heart Fail 2023; 11 (10) 1427-1438
  • 9 Omote K, Sorimachi H, Obokata M. et al. Pulmonary vascular disease in pulmonary hypertension due to left heart disease: pathophysiologic implications. Eur Heart J 2022; 43 (36) 3417-3431
  • 10 Ho JE, Zern EK, Wooster L. et al. Differential clinical profiles, exercise responses, and outcomes associated with existing HFpEF definitions. Circulation 2019; 140 (05) 353-365
  • 11 Guazzi M. Pulmonary hypertension in heart failure preserved ejection fraction: prevalence, pathophysiology, and clinical perspectives. Circ Heart Fail 2014; 7 (02) 367-377
  • 12 Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 2010; 3 (05) 588-595
  • 13 Baratto C, Caravita S, Soranna D. et al. Current limitations of invasive exercise hemodynamics for the diagnosis of heart failure with preserved ejection fraction. Circ Heart Fail 2021; 14 (05) e007555
  • 14 Lewis GD, Bossone E, Naeije R. et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 2013; 128 (13) 1470-1479
  • 15 Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016; 37 (12) 942-954
  • 16 McDonagh TA, Metra M, Adamo M. et al; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42 (36) 3599-3726
  • 17 Schelbert EB, Fridman Y, Wong TC. et al. Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome. JAMA Cardiol 2017; 2 (09) 995-1006
  • 18 Senni M, Caravita S, Paulus WJ. Do existing definitions identify subgroup phenotypes or reflect the natural history of heart failure with preserved ejection fraction?. Circulation 2019; 140 (05) 366-369
  • 19 Lupón J, Gavidia-Bovadilla G, Ferrer E. et al. Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ Heart Fail 2019; 12 (03) e005652
  • 20 Bursi F, McNallan SM, Redfield MM. et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol 2012; 59 (03) 222-231
  • 21 Savarese G, Stolfo D, Sinagra G, Lund LH. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol 2022; 19 (02) 100-116
  • 22 Vachiéry JL, Adir Y, Barberà JA. et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 2013; 62 (25) D100-D108
  • 23 Nagy AI, Venkateshvaran A, Merkely B, Lund LH, Manouras A. Determinants and prognostic implications of the negative diastolic pulmonary pressure gradient in patients with pulmonary hypertension due to left heart disease. Eur J Heart Fail 2017; 19 (01) 88-97
  • 24 Reddy YNV, Nishimura RA. Paradox of low-gradient aortic stenosis. Circulation 2019; 139 (19) 2195-2197
  • 25 Verbrugge FH, Reddy YNV, Eleid MF, Lin G, Burkhoff D, Borlaug BA. Mild aortic valve disease and the diastolic pressure-volume relationship in heart failure with preserved ejection fraction. Open Heart 2021; 8 (02) e001701
  • 26 Bermejo J, Yotti R, García-Orta R. et al; Sildenafil for Improving Outcomes after VAlvular Correction (SIOVAC) investigators. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J 2018; 39 (15) 1255-1264
  • 27 Bermejo J, González-Mansilla A, Mombiela T. et al; SIOVAC (“Sildenafil for Improving Outcomes after VAlvular Correction”) Investigators. Persistent pulmonary hypertension in corrected valvular heart disease: hemodynamic insights and long-term survival. J Am Heart Assoc 2021; 10 (02) e019949
  • 28 Al-Bawardy R, Vemulapalli S, Thourani VH. et al. Association of pulmonary hypertension with clinical outcomes of transcatheter mitral valve repair. JAMA Cardiol 2020; 5 (01) 47-56
  • 29 Bisbal F, Baranchuk A, Braunwald E, Bayés de Luna A, Bayés-Genís A. Atrial failure as a clinical entity: JACC review topic of the week. J Am Coll Cardiol 2020; 75 (02) 222-232
  • 30 Thomas L, Marwick TH, Popescu BA, Donal E, Badano LP. Left atrial structure and function, and left atrial diastolic dysfunction: JACC state-of-the-art review. J Am Coll Cardiol 2019; 73 (15) 1961-1977
  • 31 Houston BA, Tedford RJ. What we talk about when we talk about the wedge pressure. Circ Heart Fail 2017; 10 (09) e004450
  • 32 Litwin SE, Komtebedde J, Hu M. et al. Exercise-induced left atrial hypertension in heart failure with preserved ejection fraction. JACC Heart Fail 2023; 11 (8 Pt 2) 1103-1117
  • 33 Gao Y, Chen T, Raj JU. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am J Respir Cell Mol Biol 2016; 54 (04) 451-460
  • 34 Huertas A, Guignabert C, Barberà JA. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur Respir J 2018; 51 (04) 1700745
  • 35 Dayeh NR, Ledoux J, Dupuis J. Lung capillary stress failure and arteriolar remodelling in pulmonary hypertension associated with left heart disease (group 2 PH). Prog Cardiovasc Dis 2016; 59 (01) 11-21
  • 36 Dupuis J, Guazzi M. Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases. Can J Cardiol 2015; 31 (04) 416-429
  • 37 West JB, Mathieu-Costello O. Vulnerability of pulmonary capillaries in heart disease. Circulation 1995; 92 (03) 622-631
  • 38 Hoeper MM, Meyer K, Rademacher J, Fuge J, Welte T, Olsson KM. Diffusion capacity and mortality in patients with pulmonary hypertension due to heart failure with preserved ejection fraction. JACC Heart Fail 2016; 4 (06) 441-449
  • 39 Olson TP, Johnson BD, Borlaug BA. Impaired pulmonary diffusion in heart failure with preserved ejection fraction. JACC Heart Fail 2016; 4 (06) 490-498
  • 40 Gerges C, Gerges M, Lang MB. et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest 2013; 143 (03) 758-766
  • 41 Assad TR, Hemnes AR, Larkin EK. et al. Clinical and biological insights into combined post- and pre-capillary pulmonary hypertension. J Am Coll Cardiol 2016; 68 (23) 2525-2536
  • 42 Gerges M, Gerges C, Pistritto AM. et al. Pulmonary hypertension in heart failure. epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 2015; 192 (10) 1234-1246
  • 43 Caravita S, Faini A, Carolino D'Araujo S. et al. Clinical phenotypes and outcomes of pulmonary hypertension due to left heart disease: role of the pre-capillary component. PLoS One 2018; 13 (06) e0199164
  • 44 Lambert M, Mendes-Ferreira P, Ghigna MR. et al. Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovasc Res 2021; 117 (12) 2474-2488
  • 45 Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 2017; 136 (01) 6-19
  • 46 Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol 2019; 73 (12) 1463-1482
  • 47 Naeije R, Brimioulle S, Dewachter L. Biomechanics of the right ventricle in health and disease (2013 Grover Conference series). Pulm Circ 2014; 4 (03) 395-406
  • 48 Vonk Noordegraaf A, Chin KM, Haddad F. et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53 (01) 1801900
  • 49 Dell'Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin 2012; 30 (02) 167-187
  • 50 Tedford RJ, Hassoun PM, Mathai SC. et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 2012; 125 (02) 289-297
  • 51 Pellegrini P, Rossi A, Pasotti M. et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest 2014; 145 (05) 1064-1070
  • 52 Al-Naamani N, Preston IR, Paulus JK, Hill NS, Roberts KE. Pulmonary arterial capacitance is an important predictor of mortality in heart failure with a preserved ejection fraction. JACC Heart Fail 2015; 3 (06) 467-474
  • 53 Guazzi M, Dixon D, Labate V. et al. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 2017; 10 (10, Pt B): 1211-1221
  • 54 Otto CM, Nishimura RA, Bonow RO. et al; Writing Committee Members. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021; 77 (04) 450-500
  • 55 Vahanian A, Beyersdorf F, Praz F. et al; ESC/EACTS Scientific Document Group. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 2022; 43 (07) 561-632
  • 56 Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J Am Coll Cardiol 2017; 69 (18) 2331-2341
  • 57 Muraru D, Guta AC, Ochoa-Jimenez RC. et al. Functional regurgitation of atrioventricular valves and atrial fibrillation: an elusive pathophysiological link deserving further attention. J Am Soc Echocardiogr 2020; 33 (01) 42-53
  • 58 Caravita S, Figliozzi S, Florescu DR. et al. Recent advances in multimodality imaging of the tricuspid valve. Expert Rev Med Devices 2021; 18 (11) 1069-1081
  • 59 Hahn RT, Badano LP, Bartko PE. et al. Tricuspid regurgitation: recent advances in understanding pathophysiology, severity grading and outcome. Eur Heart J Cardiovasc Imaging 2022; 23 (07) 913-929
  • 60 Florescu DR, Muraru D, Florescu C. et al. Right heart chambers geometry and function in patients with the atrial and the ventricular phenotypes of functional tricuspid regurgitation. Eur Heart J Cardiovasc Imaging 2022; 23 (07) 930-940
  • 61 Andersen MJ, Nishimura RA, Borlaug BA. The hemodynamic basis of exercise intolerance in tricuspid regurgitation. Circ Heart Fail 2014; 7 (06) 911-917
  • 62 Baratto C, Caravita S, Soranna D. et al. Exercise haemodynamics in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail 2022; 9 (05) 3079-3091
  • 63 Gavazzoni M, Heilbron F, Badano LP. et al. The atrial secondary tricuspid regurgitation is associated to more favorable outcome than the ventricular phenotype. Front Cardiovasc Med 2022; 9: 1022755
  • 64 Hoeper MM, Lam CSP, Vachiéry JL. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. Eur Heart J 2017; 38 (38) 2869-2873
  • 65 Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol 2020; 75 (08) 919-930
  • 66 Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 2018; 138 (09) 861-870
  • 67 Reddy YNV, Obokata M, Verbrugge FH, Lin G, Borlaug BA. Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Am Coll Cardiol 2020; 76 (09) 1051-1064
  • 68 Opitz CF, Hoeper MM, Gibbs JS. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum?. J Am Coll Cardiol 2016; 68 (04) 368-378
  • 69 Gerges C, Pistritto AM, Gerges M. et al. Left ventricular filling pressure in chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2023; 81 (07) 653-664
  • 70 Hsu S, Kokkonen-Simon KM, Kirk JA. et al. Right ventricular myofilament functional differences in humans with systemic sclerosis-associated versus idiopathic pulmonary arterial hypertension. Circulation 2018; 137 (22) 2360-2370
  • 71 Tedford RJ, Mudd JO, Girgis RE. et al. Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 2013; 6 (05) 953-963
  • 72 Nagueh SF, Smiseth OA, Appleton CP. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29 (04) 277-314
  • 73 Omote K, Borlaug BA. Left atrial myopathy in heart failure with preserved ejection fraction. Circ J 2023; 87 (08) 1039-1046
  • 74 Bonderman D, Wexberg P, Martischnig AM. et al. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J 2011; 37 (05) 1096-1103
  • 75 Opotowsky AR, Ojeda J, Rogers F. et al. A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging 2012; 5 (06) 765-775
  • 76 D'Alto M, Romeo E, Argiento P. et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr 2015; 28 (01) 108-115
  • 77 Berthelot E, Montani D, Algalarrondo V. et al. A clinical and echocardiographic score to identify pulmonary hypertension due to HFpEF. J Card Fail 2017; 23 (01) 29-35
  • 78 Jacobs W, Konings TC, Heymans MW. et al. Noninvasive identification of left-sided heart failure in a population suspected of pulmonary arterial hypertension. Eur Respir J 2015; 46 (02) 422-430
  • 79 Peacock AJ, Vonk Noordegraaf A. Cardiac magnetic resonance imaging in pulmonary arterial hypertension. Eur Respir Rev 2013; 22 (130) 526-534
  • 80 Quarta G, Gori M, Iorio A. et al. Cardiac magnetic resonance in heart failure with preserved ejection fraction: myocyte, interstitium, microvascular, and metabolic abnormalities. Eur J Heart Fail 2020; 22 (07) 1065-1075
  • 81 Houstis NE, Eisman AS, Pappagianopoulos PP. et al. Exercise intolerance in heart failure with preserved ejection fraction: diagnosing and ranking its causes using personalized O2 pathway analysis. Circulation 2018; 137 (02) 148-161
  • 82 Pandey A, Khera R, Park B. et al. Relative impairments in hemodynamic exercise reserve parameters in heart failure with preserved ejection fraction: a study-level pooled analysis. JACC Heart Fail 2018; 6 (02) 117-126
  • 83 Weatherald J, Philipenko B, Montani D, Laveneziana P. Ventilatory efficiency in pulmonary vascular diseases. Eur Respir Rev 2021; 30 (161) 200214
  • 84 Caravita S, Faini A, Deboeck G. et al. Pulmonary hypertension and ventilation during exercise: role of the pre-capillary component. J Heart Lung Transplant 2017; 36 (07) 754-762
  • 85 Vicenzi M, Deboeck G, Faoro V, Loison J, Vachiery JL, Naeije R. Exercise oscillatory ventilation in heart failure and in pulmonary arterial hypertension. Int J Cardiol 2016; 202: 736-740
  • 86 Caravita S, Yerly P, Baratto C. et al. Noninvasive versus invasive pressure-flow relationship of the pulmonary circulation: bias and error. Eur Respir J 2019; 54 (05) 1900881
  • 87 Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2016; 133 (24) e694-e711
  • 88 Saito Y, Obokata M, Harada T. et al. Disproportionate exercise-induced pulmonary hypertension in relation to cardiac output in heart failure with preserved ejection fraction: a non-invasive echocardiographic study. Eur J Heart Fail 2023; 25 (06) 792-802
  • 89 Reddy YNV, Kaye DM, Handoko ML. et al. Diagnosis of heart failure with preserved ejection fraction among patients with unexplained dyspnea. JAMA Cardiol 2022; 7 (09) 891-899
  • 90 Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP. et al. Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction. Eur J Heart Fail 2020; 22 (03) 413-421
  • 91 Pieske B, Tschöpe C, de Boer RA. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019; 40 (40) 3297-3317
  • 92 Verwerft J, Soens L, Wynants J. et al. Heart failure with preserved ejection fraction: relevance of a dedicated dyspnoea clinic. Eur Heart J 2023; 44 (17) 1544-1556
  • 93 Maron BA, Brittain EL, Hess E. et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020; 8 (09) 873-884
  • 94 Baratto C, Caravita S, Soranna D. et al. An updated meta-analysis of hemodynamics markers of prognosis in patients with pulmonary hypertension due to left heart disease. Pulm Circ 2022; 12 (04) e12145
  • 95 Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol 2018; 3 (04) 298-306
  • 96 Sorajja P, Borlaug BA, Dimas VV. et al. SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheter Cardiovasc Interv 2017; 89 (07) E233-E247
  • 97 Hsu S, Fang JC, Borlaug BA. Hemodynamics for the heart failure clinician: a state-of-the-art review. J Card Fail 2022; 28 (01) 133-148
  • 98 D'Alto M, Romeo E, Argiento P. et al. Clinical relevance of fluid challenge in patients evaluated for pulmonary hypertension. Chest 2017; 151 (01) 119-126
  • 99 Borlaug BA. Invasive assessment of pulmonary hypertension: time for a more fluid approach?. Circ Heart Fail 2014; 7 (01) 2-4
  • 100 van de Bovenkamp AA, Wijkstra N, Oosterveer FPT. et al. The value of passive leg raise during right heart catheterization in diagnosing heart failure with preserved ejection fraction. Circ Heart Fail 2022; 15 (04) e008935
  • 101 Kovacs G, Herve P, Barbera JA. et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017; 50 (05) 1700578
  • 102 Fudim M, Kaye DM, Borlaug BA. et al. Venous tone and stressed blood volume in heart failure: JACC review topic of the week. J Am Coll Cardiol 2022; 79 (18) 1858-1869
  • 103 Borlaug BA, Blair J, Bergmann MW. et al; REDUCE LAP-HF-II Investigators. Latent pulmonary vascular disease may alter the response to therapeutic atrial shunt device in heart failure. Circulation 2022; 145 (21) 1592-1604
  • 104 Oliveira RK, Agarwal M, Tracy JA. et al. Age-related upper limits of normal for maximum upright exercise pulmonary haemodynamics. Eur Respir J 2016; 47 (04) 1179-1188
  • 105 Caravita S, Baratto C. Understanding mechanisms of Fontan failure: exercise haemodynamics to unmask diastolic dysfunction, again!. Eur J Heart Fail 2023; 25 (01) 26-29
  • 106 Rieth AJ, Kriechbaum SD, Richter MJ. et al. Exercise hemodynamic profiling is associated with outcome in patients undergoing percutaneous mitral valve repair. Circ Cardiovasc Interv 2021; 14 (09) e010453
  • 107 Agricola E, Asmarats L, Maisano F. et al. Imaging for tricuspid valve repair and replacement. JACC Cardiovasc Imaging 2021; 14 (01) 61-111
  • 108 Lurz P, Orban M, Besler C. et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair. Eur Heart J 2020; 41 (29) 2785-2795
  • 109 Stocker TJ, Hertell H, Orban M. et al. Cardiopulmonary hemodynamic profile predicts mortality after transcatheter tricuspid valve repair in chronic heart failure. JACC Cardiovasc Interv 2021; 14 (01) 29-38
  • 110 Anker SD, Butler J, Filippatos G. et al; EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385 (16) 1451-1461
  • 111 Solomon SD, McMurray JJV, Claggett B. et al; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022; 387 (12) 1089-1098
  • 112 Redfield MM, Chen HH, Borlaug BA. et al; RELAX Trial. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2013; 309 (12) 1268-1277
  • 113 Michalak M, Armstrong PW. Exploring new cardiovascular pathways: are soluble guanylate cyclase stimulators the right direction?. Circ Heart Fail 2018; 11 (03) e004813
  • 114 Gheorghiade M, Marti CN, Sabbah HN. et al; Academic Research Team in Heart Failure (ART-HF). Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev 2013; 18 (02) 123-134
  • 115 Franssen C, Chen S, Hamdani N, Paulus WJ. From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart 2016; 102 (04) 320-330
  • 116 Armstrong PW, Roessig L, Patel MJ. et al. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the VICTORIA trial. JACC Heart Fail 2018; 6 (02) 96-104
  • 117 Pieske B, Maggioni AP, Lam CSP. et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 2017; 38 (15) 1119-1127
  • 118 Armstrong PW, Pieske B, Anstrom KJ. et al; VICTORIA Study Group. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 2020; 382 (20) 1883-1893
  • 119 Bonderman D, Ghio S, Felix SB. et al; Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 2013; 128 (05) 502-511
  • 120 Vachiéry JL, Delcroix M, Al-Hiti H. et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J 2018; 51 (02) 1701886
  • 121 Hoendermis ES, Liu LC, Hummel YM. et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 2015; 36 (38) 2565-2573
  • 122 Burkhoff D, Borlaug BA, Shah SJ. et al. Levosimendan improves hemodynamics and exercise tolerance in PH-HFpEF: results of the randomized placebo-controlled HELP trial. JACC Heart Fail 2021; 9 (05) 360-370
  • 123 Dachs TM, Duca F, Rettl R. et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: the haemoDYNAMIC trial. Eur Heart J 2022; 43 (36) 3402-3413
  • 124 García-Álvarez A, Blanco I, García-Lunar I. et al; SPHERE-HF Investigators. β3 adrenergic agonist treatment in chronic pulmonary hypertension associated with heart failure (SPHERE-HF): a double blind, placebo-controlled, randomized clinical trial. Eur J Heart Fail 2023; 25 (03) 373-385
  • 125 ClinicalTrials.gov. Accessed December 31, 2022 at: https://clinicaltrials.gov
  • 126 Kirklin JK, Naftel DC, Kirklin JW, Blackstone EH, White-Williams C, Bourge RC. Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant 1988; 7 (05) 331-336
  • 127 Mehra MR, Canter CE, Hannan MM. et al; International Society for Heart Lung Transplantation (ISHLT) Infectious Diseases, Pediatric and Heart Failure and Transplantation Councils. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant 2016; 35 (01) 1-23
  • 128 Zimpfer D, Zrunek P, Roethy W. et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 2007; 133 (03) 689-695
  • 129 Masri SC, Tedford RJ, Colvin MM, Leary PJ, Cogswell R. Pulmonary arterial compliance improves rapidly after left ventricular assist device implantation. ASAIO J 2017; 63 (02) 139-143
  • 130 Crawford TC, Leary PJ, Fraser III CD. et al. Impact of the new pulmonary hypertension definition on heart transplant outcomes: expanding the hemodynamic risk profile. Chest 2020; 157 (01) 151-161
  • 131 Gulati G, Grandin EW, Kennedy K. et al. Preimplant phosphodiesterase-5 inhibitor use is associated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail 2019; 12 (06) e005537