Skip to main content
Log in

Polymer Electrolytes Based on Polybenzimidazole, Poly(Vinylidene Fluoride-co-Hexafluoropropylene), and Ionic Liquids

  • POLYELECTROLYTES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Ionic liquids, salts with melting temperature below 100°C, have continuously attracted research interest. Introduction of ionic liquids in a polymer matrix affords polymer electrolytes exhibiting extremely high electroconductivity and electrochemical stability, membranes on their basis possessing good mechanical properties. Diversity of the polymers/copolymers suitable as the matrix as well as practically unlimited variety of ionic liquids (obtained via variation of the anion-cation composition and additional modification of the ions chemical structure) have afforded the polymer electrolytes with a wide range of the physico-chemical properties. In this study, the attention has been primarily focused on the results published over the recent decades and related to investigation of electrolytes for electrochemical devices, in which the membranes based on polybenzimidazole (meta-PBI), the poly(vinylidene fluoride-со-hexafluoropropylene) (PVdF-HFP) copolymer, and ammonium or imidazolium ionic liquids have been used. Various types of polymer electrolytes differing in the composition and the application range have been considered in this study: polymer + ionic liquid, polymer + ionic liquid + acid, and polymer + ionic liquid + lithium/sodium salt. Moreover, the influence of the fillers, introduced in the above-said polymer electrolytes to improve the properties and resolve the issue of the ionic liquid retention in the membrane, has been discussed. This report presents vast data sets (tables) on the electroconductivity and thermal stability of more than 100 polymer electrolytes, which are demanded by the broad journal audience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Terasawa and K. Asaka, Mater. Today: Proc. 20, 265 (2020).

    CAS  Google Scholar 

  2. A. K. Natha and R. Talukdar, Int. J. Polym. Anal. Charact. 25 (8), 597 (2020).

    Google Scholar 

  3. J. Lan, Y. Li, B. Yan, C. Yin, R. Ran, and L.-Y. Shi, ACS Appl. Mater. Interfaces 12, 37597 (2020).

    CAS  PubMed  Google Scholar 

  4. Z. Ullah, A. S. Khan, N. Muhammad, R. Ullah, A. S. Alqahtani, S. N. Sha, O. B. Ghanem, M. A. Bustam, and Z. Man, J. Mol. Liq. 266, 673 (2018).

    CAS  Google Scholar 

  5. S. Singhal, S. Agarwal, M. Singh, S. Rana, S. Arora, and N. Singhal, J. Mol. Liq. 285, 299 (2019).

    CAS  Google Scholar 

  6. E. A. Chernikova, L. M. Glukhov, V. G. Krasovskiy, L. M. Kustov, M. G. Vorobyeva, and A. A. Koroteev, Russ. Chem. Rev. 84 (8), 875 (2015).

    CAS  Google Scholar 

  7. E. Fabre and S. M. S. Murshed, J. Mater. Chem. A 9, 15861 (2021).

    CAS  Google Scholar 

  8. A. Alashkar, A. Al-Othman, M. Tawalbeh, and M. Qasim, Membranes 12 (2), 178 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Liu, B. Chen, W. Shi, W. Huang, and H. Qian, Mol. Pharmaceutics 19 (4), 1033 (2022).

    CAS  Google Scholar 

  10. L. Sun, K. Zhuo, Y. Chen, Q. Du, S. Zhang, and J. Wang, Adv. Funct. Mater. 32 (27), 2203611 (2022).

  11. W. Zhuang, K. Hachem, D. Bokov, M. J. Ansari, and A. T. Nakhjiri, J. Mol. Liq. 349, 118145 (2022).

  12. G. Kaur, H. Kumar, and M. Singla, J. Mol. Liq. 351, 118556 (2022).

  13. W. Jiang, X. Li, G. Gao, F. Wu, C. Luo, and L. Zhang, Chem. Eng. J. 445, 136767 (2022).

  14. P. A. Yudaev and E. M. Chistyakov, Chem. Eng. Sci. 6 (1), 6 (2022).

    CAS  Google Scholar 

  15. S. K. Singh and A. W. Savoy, J. Mol. Liq. 297, 112038 (2020).

  16. O. Lebedeva, D. Kultin, and L. Kustov, Nanomaterials 11 (12), 3270 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. T. M. Dhameliya, P. R. Nagar, K. A. Bhakhar, H. R. Jivani, B. J. Shah, K. M. Patel, V. S. Patel, A. H. Soni, L. P. Joshi, and N. D. Gajjar, J. Mol. Liq. 348, 118329 (2022).

  18. B. Karimi, M. Tavakolian, M. Akbari, and F. Mansouri, ChemCatChem 10 (15), 3173 (2018).

    CAS  Google Scholar 

  19. J. Richter and M. Ruck, Molecules 25 (1), 78 (2020).

    CAS  Google Scholar 

  20. N. Noroozi-Shad, M. Gholizadeh, and H. Sabet-Sarvestani, J. Mol. Struct. 1257, 132628 (2022).

  21. D. O. Ponkratov, A. S. Shaplov, and Y. S. Vygodskii, Polym. Sci., Ser. C 61 (1), 2 (2019).

    CAS  Google Scholar 

  22. M. R. Asrami, N. N. Tran, K. D. P. Nigam, and V. Hessel, Sep. Purif. Technol. 262, 118289 (2021).

  23. W.-W. Yan, X.-Y. Wei, M.-X. Wang, and Z.-M. Zong, Ind. Eng. Chem. Res. 61 (13), 4481 (2022).

    CAS  Google Scholar 

  24. E. Quijada-Maldonado and J. Romero, Curr. Opin. Green Sustainable Chem. 27, 100428 (2021).

  25. B. Kazmi, S. A. A. Taqvi, and S. I. Ali, ChemBioEng Rev. 9 (2), 190 (2022).

    CAS  Google Scholar 

  26. J. Guo, Z. D. Tucker, Y. Wang, B. L. Ashfeld, and T. Luo, Nat. Commun. 12, 437 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Xu, G. Yang, D. Wu, M. Yao, C. Xing, J. Zhang, H. Zhang, F. Li, Y. Feng, S. Qi, M. Zhuo, and J. Ma, Chem. Asian. J. 16, 549 (2021).

    CAS  PubMed  Google Scholar 

  28. I. Osada, H. de Vries, B. Scrosati, and S. Passerini, Angew. Chem. Int. Ed. 55, 500 (2016).

    CAS  Google Scholar 

  29. S. Sultana, K. Ahmed, P. K. Jiwanti, B. Y. Wardhana, and N. I. Shiblee, Gels 8 (1), 2 (2022).

    CAS  Google Scholar 

  30. H. A. Elwan, R. Thimmappa, M. Mamlouk, and K. Scott, J. Power Sources 510, 230371 (2021).

  31. L. Yin, S. Li, X. Liu, and T. Yan, Sci. China Mater. 62 (11), 1537 (2019).

    CAS  Google Scholar 

  32. G. G. Eshetu, D. Mecerreyes, M. Forsyth, H. Zhang, and M. Armand, Mol. Syst. Des. Eng. 4, 294 (2019).

    CAS  Google Scholar 

  33. A. Ray and B. Saruhan, Materials 14, 2942 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. A. S. Shaplov, D. O. Ponkratov, P. S. Vlasov, E. I. Lozinskaya, I. A. Malyshkina, F. Vidal, P.-H. Aubert, M. Armand, and Y. S. Vygodskii, Polym. Sci., Ser. B 56 (2), 164 (2014).

    CAS  Google Scholar 

  35. K. S. Egorova and V. P. Ananikov, J. Mol. Liq. 272, 271 (2018).

    CAS  Google Scholar 

  36. T. B. V. Dinis, F. A. e Silva, F. Sousa, and M. G. Freire, Materials 14 (21), 6231 (2021).

    CAS  PubMed  Google Scholar 

  37. N. Gandhewar and P. Shende, Ionics 27, 3715 (2021).

    CAS  Google Scholar 

  38. A. M. Curreri, S. Mitragotri, and E. E. L. Tanner, Adv. Sci. 8, 2004819 (2021).

  39. R. Hayes, G. G. Warr, and R. Atkin, Chem. Rev. 115, 6357 (2015).

    CAS  PubMed  Google Scholar 

  40. P. A. Hunt, C. R. Ashworth, and R. P. Matthews, Chem. Soc. Rev. 44, 1257 (2015).

    CAS  PubMed  Google Scholar 

  41. H. Abe, J. Mol. Liq. 332, 115189 (2021).

  42. O. Nordness and J. F. Brennecke, Chem. Rev. 120, 12873 (2020).

    CAS  PubMed  Google Scholar 

  43. L. E. Shmukler, I. V. Fedorova, Yu. A. Fadeeva, and L. P. Safonova, J. Mol. Liq. 321, 114350 (2021).

  44. E. Fabre and S. M. S. Murshed, J. Mater. Chem. A 9, 15861 (2021).

    CAS  Google Scholar 

  45. C. S. Buettner, A. Cognigni, C. Schröder, and K. Bica-Schröder, J. Mol. Liq. 347, 118160 (2022).

  46. A. S. Shaplov, D. O. Ponkratov, and Y. S. Vygodskii, Polym. Sci., Ser. B 58 (2), 73 (2016).

    CAS  Google Scholar 

  47. A. Kazakov, J. W. Magee, R. D. Chirico, E. Paulechka, V. Diky, C. D. Muzny, K. Kroenlein, and M. Frenkel, “NIST Standard Reference Database 147: NIST Ionic Liquids Database - (ILThermo),” Version 2.0, National Institute of Standards and Technology, Gaithersburg MD, 20899. https://ilthermo.boulder.nist.gov. Accessed August 21, 2023.

  48. S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, and S. Li, Ionic Liquids: Physicochemical Properties (Elsevier, 2009).

    Google Scholar 

  49. V. Bocharova and A. P. Sokolov, Macromolecules 53 (11), 4141 (2020).

    CAS  Google Scholar 

  50. K. Yue, C. Zhai, S. Gu, J. Yeo, and G. Zhou, Electrochim. Acta 401, 139527 (2022).

  51. J. Atik, J. H. Thienenkamp, G. Brunklaus, M. Winter, and E. Paillard, Electrochim. Acta 398, 139333 (2021).

  52. Y. Yang, Q. Wu, D. Wang, C. Ma, Z. Chen, Q. Su, C. Zhu, and C. Li, J. Membr. Sci. 612, 118424 (2020).

  53. M. T. Musa, N. Shaari, and S. K. Kamarudin, Int. J. Energy Res. 45, 1309 (2021).

    Google Scholar 

  54. K. G. Khatmullina, G. R. Baimuratova, V. A. Lesnichaya, N. I. Shuvalova, and O. V. Yarmolenko, Polym. Sci., Ser. A 60 (2), 222 (2018).

    CAS  Google Scholar 

  55. S. Ahmad, T. Nawaz, A. Ali, M. F. Orhan, A. Samreen, and A. M. Kannan, Int. J. Hydrogen Energy 47, 19086 (2022).

    CAS  Google Scholar 

  56. Z. Guo, J. Chen, J. J. Byun, M. Perez-Page, Z. Ji, Z. Zhao, and S. M. Holmes, J. Membr. Sci. 641, 119868 (2022).

  57. J. Kim, K. Kim, T. Ko, J. Han, and J.-C. Lee, Int. J. Hydrogen Energy 46, 12254 (2021).

    CAS  Google Scholar 

  58. S. Kumar, V. S. Manikandan, A. K. Palai, S. Mohanty, and S. K. Nayak, Solid State Ionics 332, 10 (2019).

    CAS  Google Scholar 

  59. S. Vinoth, G. Kanimozhi, K. Hari Prasad, Kumar Harish, E. S. Srinadhu, and N. Satyanarayana, Polym. Compos. 40, 1585 (2019).

    CAS  Google Scholar 

  60. R. Jamil and D. S. Silvester, Curr. Opin. Electrochem. 35, 101046 (2022).

  61. Shalu, R. K. Singh, and R. Dhar, Int. J. Energy Res. 45, 15646 (2021).

    CAS  Google Scholar 

  62. M. Ebrahimi, W. Kujawski, K. Fatyeyeva, and J. Kujawa, Int. J. Mol. Sci. 22, 5430 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. N. Shaari, N. N. R. Ahmad, R. Bahru, and C. P. Leo, Int. J. Energy Res. 46, 2166 (2022).

    CAS  Google Scholar 

  64. R. M. L. L. Rathnayake, K. S. Perera, and K. P. Vidanapathirana, AIMS Energy 8 (2), 231 (2020).

    CAS  Google Scholar 

  65. J. P. Sharma and V. Bharti, IOP Conf. Ser.: Mater. Sci. Eng. 961, 012005 (2020).

  66. G. Yang, Y. Song, Q. Wang, L. Zhang, and L. Deng, Mater. Des. 190, 108563 (2020).

  67. K. S. Khoo, W. Y. Chia, K. Wang, C.-K. Chang, H. Y. Leong, M. N. B. Maaris, and P. L. Show, Sci. Total Environ. 793, 148705 (2021).

  68. J. Escorihuela, J. Olvera-Mancilla, L. Alexandrova, L. F. del Castillo, and V. Vicente Compañ, Polymers 12, 1861 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. C. Y. Wong, W. Y. Wong, K. S. Loh, and K. L. Lim, React. Funct. Polym. 171, 105160 (2022).

  70. L. K. Seng, M. S. Masdar, and L. K. Shyuan, Membranes 11, 728 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. H. A. Elwan, M. Mamlouk, and K. Scott, J. Power Sources 484, 229197 (2021).

  72. P. Bakonyi, L. Koók, T. Rózsenberszki, G. Tóth, K. Bélafi-Bakó, and N. Nemestóthy, Membranes 10, 16 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. I. Vázquez-Fernández, M. Raghibi, A. Bouzina, L. Timperman, J. Bigarré, and M. Anouti, J. Energy Chem. 53, 197 (2021).

    Google Scholar 

  74. I. Vázquez-Fernández, A. Bouzina, M. Raghibi, L. Timperman, J. Bigarré, and M. Anouti, J. Mater. Sci. 55, 16697 (2020).

    Google Scholar 

  75. S. Mondal, F. Papiya, S. N. Ash, and P. P. Kundu, J. Environ. Chem. Eng. 9, 104945 (2021).

  76. S. R. Kumar, J.-J. Wang, Y.-S. Wu, C.-C. Yang, and S. J. Lue, J. Power Sources 445, 227293 (2020).

  77. C. Hou, X. Zhang, Y. Li, G. Zhou, and J. Wang, J. Membr. Sci. 550, 136 (2018).

    CAS  Google Scholar 

  78. P. Kumar and R. P. Bharti, J. Electrochem. Soc. 166 (15), F1190 (2019).

    Google Scholar 

  79. K. Karuppasamy, J. Theerthagiri, D. Vikraman, C.‑J. Yim, S. Hussain, R. Sharma, T. Maiyalagan, J. Qin, and H.-S. Kim, Polymers 12, 918 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. E. Josef, Y. Yan, M. C. Stan, J. Wellmann, A. Vizintin, M. Winter, P. Johansson, R. Dominko, and R. Guterman, Isr. J. Chem. 59, 832 (2019).

    CAS  Google Scholar 

  81. X. Tang, S. Lv, K. Jiang, G. Zhou, and X. Liu, J. Power Sources 542, 231792 (2022).

  82. M. J. Park, I. Choi, J. Hong, and O. Kim, J. Appl. Polym. Sci. 129, 2363 (2013).

    CAS  Google Scholar 

  83. W. Ye, H. Wang, J. Ning, Y. Zhong, and Y. Hu, J. Energy Chem. 57, 219 (2021).

    CAS  Google Scholar 

  84. Y.-S. Ye, J. Rick, and B. Hwang, J. Mater. Chem. A 1, 2719 (2013).

    CAS  Google Scholar 

  85. J. Lin, S. Willbold, T. Zinkevich, S. Indris, and C. Korte, J. Mol. Liq. 342, 116964 (2021).

  86. B. Niu, S. Luo, C. Lu, W. Yi, J. Liang, S. Guo, D. Wang, F. Zeng, S. Duan, Y. Liu, L. Zhang, and B. Xu, Solid State Ionics 361, 115569 (2021).

  87. S. Liu, L. Zhou, P. Wang, F. Zhang, S. Yu, Z. Shao, and B. Yi, ACS Appl. Mater. Interfaces 6, 3195 (2014).

    CAS  PubMed  Google Scholar 

  88. G. Skorikova, D. Rauber, D. Aili, S. Martin, Q. Li, D. Henkensmeier, and R. Hempelmann, J. Membr. Sci. 608, 118188 (2020).

  89. M. Mamlouk, P. Ocon, and K. Scott, J. Power Sources 245, 915 (2014).

    CAS  Google Scholar 

  90. J. Lin and C. Korte, Fuel Cells 20 (4), 461 (2020).

    CAS  Google Scholar 

  91. Yu. A. Fadeeva, S. M. Kuzmin, L. E. Shmukler, and L. P. Safonova, Russ. Chem. Bull. 70 (1), 56 (2021).

    CAS  Google Scholar 

  92. V. Compañ, J. Escorihuela, J. Olvera, A. García-Bernabe, and A. Andrio, Electrochim. Acta 354, 136666 (2020).

  93. J. T.-W. Wang and S. L.-C. Hsu, Electrochim. Acta 56, 2842 (2011).

    CAS  Google Scholar 

  94. E. Van de Ven, A. Chairuna, G. Merle, S. P. Benito, Z. Borneman, and K. Nijmeijer, J. Power Sources 222, 202 (2013).

    CAS  Google Scholar 

  95. A. Eguizabal, J. Lemus, V. Roda, M. Urbiztondo, F. Barreras, and M. P. Pina, Int. J. Hydrog. Energy 37, 7221 (2012).

    CAS  Google Scholar 

  96. L. G. Trindade, L. Zanchet, P. C. Martins, K. M. N. Borba, R. D. M. Santos, R. S. Paiva, L. A. F. Vermeersch, E. A. Ticianelli, M. O. Souza, and E. M. A. Martini, Polymer 179, 121723 (2019).

  97. J. Schauer, A. Sikora, M. Plišková, J. Mališ, P. Mazúrb, M. Paidar, and K. Bouzek, J. Membr. Sci. 367, 332 (2011).

    CAS  Google Scholar 

  98. Z. Rajabi, M. Javanbakht, K. Hooshyari, A. Badieid, and M. Adibi, New J. Chem. 44, 5001 (2020).

    CAS  Google Scholar 

  99. T. Mao, S. Wang, X. Wang, F. Liu, J. Li, H. Chen, D. Wang, G. Liu, J. Xu, and Z. Wang, ACS Appl. Mater. Interfaces 11, 17742 (2019).

    CAS  PubMed  Google Scholar 

  100. J. Escorihuela, A. García-Bernabé, Á. Montero, Ó. Sahuquillo, E. Giménez, and V. Compañ, Polymers 11, 732 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. X. Wang, S. Wang, C. Liu, J. Li, F. Liu, X. Tian, H. Chen, T. Mao, J. Xu, and Z. Wang, Electrochim. Acta 283, 691 (2018).

    CAS  Google Scholar 

  102. C. Xu, X. Liu, J. Cheng, and K. Scott, J. Power Sources 274, 922 (2015).

    CAS  Google Scholar 

  103. A. Eguizábal, J. Lemus, and M. P. Pina, J. Power Sources 222, 483 (2013).

    Google Scholar 

  104. T. Xiao, R. Wang, Z. Chang, Z. Fang, Z. Zhu, and C. Xu, Prog. Nat. Sci.: Mater. Int. 30, 743 (2020).

    CAS  Google Scholar 

  105. D. Aili, D. Henkensmeier, S. Martin, B. Singh, Y. Hu, J. O. Jensen, L. N. Cleemann, and Q. Li, Electrochem. Energy Rev. 3, 793 (2020).

    CAS  Google Scholar 

  106. S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen, and S. K. Kœr, Int. J. Hydrogen Energy 41, 21310 (2016).

    CAS  Google Scholar 

  107. E. Quartarone and P. Mustarelli, Energy Environ. Sci. 5, 6436 (2012).

    CAS  Google Scholar 

  108. J. Li, X. Li, S. Yu, J. Hao, W. Lu, Z. Shao, and B. Yi, Energy Convers. Manage. 85, 323 (2014).

    CAS  Google Scholar 

  109. K. A. Perry, K. L. More, E. A. Payzant, R. A. Meisner, B. G. Sumpter, and B. C. Benicewicz, J. Polym. Sci., Part B: Polym. Phys. 52, 26 (2014).

    CAS  Google Scholar 

  110. T. K. Maiti, J. Singh, J. Majhi, A. Ahuja, S. Maiti, P. Dixit, S. Bhushan, A. Bandyopadhyay, and S. Chattopadhyay, Polymer 255, 125151 (2022).

  111. E. Qu, X. Hao, M. Xiao, D. Han, S. Huang, Z. Huang, S. Wang, and Y. Meng, J. Power Sources 533, 231386 (2022).

  112. M. A. Haque, A. B. Sulong, K. S. Loh, E. H. Majlan, T. Husaini, and R. E. Rosli, Int. J. Hydrogen Energy 42, 9156 (2017).

    CAS  Google Scholar 

  113. S. Subianto, Polym. Int. 63, 1134 (2014).

    CAS  Google Scholar 

  114. A. Y. Leikin, E. G. Bulycheva, A. L. Rusanov, and D. Yu. Likhachev, Polym. Sci., Ser. B 48 (5–6), 144 (2006).

    Google Scholar 

  115. J. S. Yang, L. N. Cleemann, T. Steenberg, C. Terkelsen, Q. F. Li, J. O. Jensen, H. A. Hjuler, N. J. Bjerrum, and R. H. He, Fuel Cells 14, 7 (2014).

    CAS  Google Scholar 

  116. K. Hooshyari, M. Javanbakht, and M. Adibi, Int. J. Hydrogen Energy 42, 10870 (2016).

    Google Scholar 

  117. K. Hooshyari, M. Javanbakht, and M. Adibi, Electrochim. Acta 205, 142 (2016).

    CAS  Google Scholar 

  118. Y. A. Dobrovolsky, A. I. Chikin, E. A. Sanginov, and A. V. Chub, ISJAEE 168, 22 (2015).

    Google Scholar 

  119. S. Das and A. Ghosh, J. Appl. Polym. Sci. 137 (22), 48757 (2020).

    CAS  Google Scholar 

  120. M. Shi, C. Yang, C. Yan, J. Jiang, Y. Liu, Z. Sun, W. Shi, G. Jian, Z. Guo, and J.-H. Ahn, NPG Asia Mater. 11, 61 (2019).

    Google Scholar 

  121. F. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi, J. Qin, Q. Fu, X. Bao, X. Feng, K. Müllen, and Z.-S. Wu, J. Am. Chem. Soc. 140, 8198 (2018).

    CAS  PubMed  Google Scholar 

  122. G. P. Pandey, T. Liu, C. Hancock, Y. Li, X. S. Sun, and J. Li, J. Power Sources 328, 510 (2016).

    CAS  Google Scholar 

  123. A. A. Hor, N. Yadav, and S. A. Hashmi, J. Energy Storage 47, 103608 (2022).

  124. X. Zhang, M. Kar, T. C. Mendes, and Y. Wu, and D. R. MacFarlane, Adv. Energy Mater. 8, 1702702 (2018).

  125. H. G. Redda, Y. Nikodimos, W.-N. Su, R.-S. Chen, S.-K. Jiang, L. H. Abrha, T. M. Hagosb, H. K. Bezabh, H. H. Weldeyohannes, and B. J. Hwang, Mater. Today Commun. 26, 102102 (2021).

  126. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, Adv. Funct. Mater. 23, 3353 (2013).

    CAS  Google Scholar 

  127. J. Guan, Y. Li, and J. Li, Ind. Eng. Chem. Res. 56, 12456 (2017).

    CAS  Google Scholar 

  128. M.-J. Shi, S.-Z. Kou, B.-S. Shen, J.-W. Lang, Z. Yang, and X.-B. Yan, Chin. Chem. Lett. 25, 859 (2014).

    CAS  Google Scholar 

  129. S. Kumar, P. K. Singh, D. Agarwal, P. S. Dhapola, T. Sharma, S. V. Savilov, E. A. Arkhipova, M. K. Singh, and A. Singh, Phys. Status Solidi A 219 (7), 2100711 (2022).

  130. D. Kumar and D. K. Kanchan, J. Energy Storage 22, 44 (2019).

    Google Scholar 

  131. J. Maliś, P. Mazúr, J. Schauer, M. Paidar, and K. Bouzek, Int. J. Hydrogen Energy 38, 4697 (2013).

    Google Scholar 

  132. G. P. Pandey and S. A. Hashmi, J. Mater. Chem. A 1, 3372 (2013).

    CAS  Google Scholar 

  133. Shalu, V. K. Singh, and R. K. Singh, J. Mater. Chem. C 3, 7305 (2015).

    CAS  Google Scholar 

  134. L.-Q. Fan, Q.-M. Tu, C.-L. Geng, Y.-L. Wang, S.-J. Sun, Y.-F. Huang, and J.-H. Wu, Int. J. Hydrogen Energy 45, 17131 (2020).

    CAS  Google Scholar 

  135. J. P. Serra, R. S. Pinto, J. C. Barbosa, D. M. Correia, R. Gonçalves, M. M. Silva, S. Lanceros-Mendez, and C. M. Costa, Sustainable Mater. Technol. 25, e00176 (2020).

  136. M. Tripathi, S. M. Bobade, M. Gupta, and Y. Kumar, Macromol. Symp. 388, 1900029 (2019).

  137. K. Mishra, S. A. Hashmi, and D. K. Rai, J. Solid State Electrochem. 18, 2255 (2014).

    CAS  Google Scholar 

  138. M. Tripathi and S. K. Tripathi, Ionics 23, 2735 (2017).

    CAS  Google Scholar 

  139. Shalu, S. K. Chaurasia, R. K. Singh, and S. Chandra, J. Phys. Chem. B 117, 897 (2013).

    CAS  PubMed  Google Scholar 

  140. A. Gupta, A. Jain, and S. K. Tripathi, J. Energy Storage 32, 101723 (2020).

  141. S. Siyahjani, S. Oner, H. Diker, B. Gultekin, and C. Varlikli, J. Power Sources 467, 228353 (2020).

  142. L. E. Shmukler, E. V. Glushenkova, Yu. A. Fadeeva, M. S. Gruzdev, N. O. Kudryakova, and L. P. Safonova, J. Mol. Liq. 283, 338 (2019).

    CAS  Google Scholar 

  143. N. Terasawa, Diamond Relat. Mater. 95, 77 (2019).

    CAS  Google Scholar 

  144. M. G. Nair, S. R. Mohapatra, M.-R. Garda, B. Patanair, A. Saiter-Fourcin, and S. Thomas, Mater. Res. Express 7, 064005 (2020).

  145. M. G. Nair and S. R. Mohapatra, Mater. Lett. 251, 148 (2019).

    CAS  Google Scholar 

  146. Harshlata, K. Mishra, and D. K. Rai, Mater. Sci. Eng. B 267, 115098.

  147. D. T. Vo, H. N. Do, T. T. Nguyen, T. T. H. Nguyen, V. M. Tran, S. Okada, and M. L. P. Le, Mater. Sci. Eng. B 241, 27 (2019).

    CAS  Google Scholar 

  148. R. Mishra, S. K. Singh, H. Gupta, R. K. Tiwari, D. Meghnani, A. Patel, A. Tiwari, V. K. Tiwari, and R. K. Singh, Energy Fuels 35, 15153 (2021).

    CAS  Google Scholar 

  149. M. S. Syali, K. Mishra, D. K. Kanchan, and D. Kumar, J. Mol. Liq. 341, 116922 (2021).

  150. A. T. Manfo, P. K. Singh, R. M. Mehra, R. C. Singh, and M. Gupta, Recent Innovations Chem. Eng. 14, 21 (2021).

    CAS  Google Scholar 

  151. P. Xu, H. Chen, X. Zhou, and H. Xiang, J. Membr. Sci. 617, 118660 (2021).

  152. T. Chen, W. Kong, Z. Zhang, L. Wanga, Y. Hu, G. Zhu, R. Chen, L. Ma, W. Yan, Y. Wang, J. Liu, and Z. Jin, Nano Energy 54, 17 (2018).

    CAS  Google Scholar 

  153. Q. Guo, Y. Han, H. Wang, S. Xiong, S. Liu, C. Zheng, and K. Xie, Solid State Ionics 321, 48 (2018).

    CAS  Google Scholar 

  154. S. K. Singh, H. Gupta, L. Balo, Shalu, V. K. Singh, A. K. Tripathi, Y. L. Verma, and R. K. Singh, Ionics 24, 1895 (2018).

    CAS  Google Scholar 

  155. Shalu-Kataria, L. Balo, H. Gupta, V. K. Singh, S. K. Singh, A. K. Tripathi, Y. L. Verma, and R. K. Singh, ECS Trans. 73 (1), 183 (2016).

    Google Scholar 

  156. Shalu, L. Balo, H. Gupta, V. K. Singh, and R. K. Singh, RSC Adv. 6, 73028 (2016).

    CAS  Google Scholar 

  157. A. Hofmann, M. Schulz, and T. Hanemann, Electrochim. Acta 89, 823 (2013).

    CAS  Google Scholar 

  158. J. Bai, H. Lu, Y. Cao, X. Li, and J. Wang, RSC Adv. 7, 30603 (2017).

    CAS  Google Scholar 

  159. P. X. Yang, W. Y. Cui, L. B. Li, and L. Liu, and M. Z. An, Solid State Sci. 14, 598 (2012).

    CAS  Google Scholar 

  160. S. Kataria, Y. L. Verma, H. Gupta, S. K. Singh, N. Srivastava, R. Dhar, and R. K. Singh, Polym.-Plast. Technol. Mater. 59 (9), 952 (2020).

    CAS  Google Scholar 

  161. M. Yao,  A. Liu, C. Xing, B. Li, S. Pan, J. Zhang, P. Su, and H. Zhang, Chem. Eng. J. 394, 124883 (2020).

  162. T. Huang, M.-C. Long, G. Wu, Y.-Z. Wang, and X.‑L. Wang, ChemElectroChem 6, 3674 (2019).

    CAS  Google Scholar 

  163. T. Huang, M.-C. Long, X.-L. Wang, G. Wu, and Y.‑Z. Wang, Chem. Eng. J. 375, 122062 (2019).

  164. A. Zalewska, J. Dumińska, N. Langwald, J. Syzdek, and M. Zawadzki, Electrochim. Acta 121, 337 (2014).

    CAS  Google Scholar 

  165. K. Huang, Y. Wang, H. Mi, D. Ma, B. Yong, and P. Zhang, J. Mater. Chem. A 8, 20593 (2020).

    CAS  Google Scholar 

  166. Z. Hu, J. Chen, Y. Guo, J. Zhu, X. Qu, W. Niu, and X. Liu, J. Membr. Sci. 599, 117827 (2020).

  167. Q. Guo, Y. Han, H. Wang, X. Hong, C. Zheng, S. Liu, and K. Xie, RSC Adv. 6, 101638 (2016).

  168. J. Tang, R. Muchakayala, S. Song, M. Wang, and K. N. Kumar, Polym. Test. 50, 247 (2016).

    CAS  Google Scholar 

  169. Shalu, S. K. Chaurasia, R. K. Singh, and S. Chandra, J. Appl. Polym. Sci. 132, 41456 (2015).

    Google Scholar 

  170. S. Khurana and A. Chandra, Solid State Ionics 340, 115027 (2019).

  171. Y. Kumar, G. P. Pandey, and S. A. Hashmi, J. Phys. Chem. C 116, 26118 (2012).

    CAS  Google Scholar 

  172. K. Karuppasamy, P.  Anil Reddy, G. Srinivas, R. Sharma, A. Tewari, G. H. Kumar, and D. Gupta, J. Solid State Electrochem. 21, 1145 (2017).

    CAS  Google Scholar 

  173. K. Karuppasamy, P. A. Reddy, G. Srinivas, A. Tewari, R. Sharma, X. S. Shajan, and D. Gupta, J. Membr. Sci. 514, 350 (2016).

    CAS  Google Scholar 

  174. Q. Li and H. Ardebili, J. Power Sources 303, 17 (2016).

    Google Scholar 

  175. L. Liu, X. Wang, C. Yang, P. Han, L. Zhang, L. Gao, Z. Wu, B. Liu, and R. Liu, Acta Metall. Sin. (Engl. Lett.) 34, 417 (2021).

  176. Yu. V. Baskakova, O. V. Yarmolenko, and O. N. Efimov, Russ. Chem. Rev. 81 (4), 367 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Shmukler.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

APPENDIX

APPENDIX

ABBREVIATIONS

Cations

AEIm

3-Allyl-1-ethylimidazolium

AMIm

3-Allyl-1-methylimidazolium

AMEtA

N-Methyl-2-(2-methoxyethoxy)-N,N-bis[2-(2-methoxyethoxy)ethyl]ethane-1-ammonium

AMEtIm

N-Methyl-2-(2-methoxyethoxy)-N,N-bis[2-(2-methoxyethoxy)ethyl]imidazolium

ApMIm

1-(3-Aminopropyl)-3-methylimidazolium

BIm

1-Butylimidazolium

BMIm

1-Butyl-3-methylimidazolium

C3CNMIm

1-Cyanomethyl-3-methylimidazolium

DEA

Diethylammonium

DEMA

Diethylmethylammonium

DEMMsA

N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium

DIPEA

Diisopropylethylammonium

DMEA

Dimethylethylammonium

DMEtOHA

N,N-Dimethyl-N-(2-hydroxyethyl)ammonium

EIm

1-H-3-Ethylimidazolium

EMIm

1-Ethyl-3-methylimidazolium

HMIm

1-Hexyl-3-methylimidazolium

MIm

1-H-3-Methylimidazolium

MMEtA

N-Methyl-N-tris(2-methoxyethyl)ammonium

MsMIm

1-(3-Trimethoxysilylpropyl)-3-methylimidazolium

MtOHTMA

(2-Hydroxymethyl)trimethylammonium

OHEMIm

1-(2-Hydroxyethyl)-3-methylimidazolium

PDEIm

Poly(1,2-diethoxyethylimidazolium)

Pr(MIm)2

1,3-Di(3-methylimidazolium)propane

SEMA

2-Sulfoethylmethylammonum

TBA

Tributylammonium

TEA

Triethylammonium

TEOA

Triethanolammonium

TESPA

Triethyl(3-sulfopropyl)ammonium

TetEA

Tetraethylammonium

Polymers

PBI

Poly-2,2'-(m-phenylene)-5,5'-di(benzimidazole)

PBI-O-Ph

Derivative of polybenzimidazole bearing benzofuran fragments

P(MMA-co-BMA)

Poly(methyl methacrylate–co–butyl methacrylate)

pPBI

Porous polybenzimidazole

PVdF-HFP

Poly(vinylidene fluoride-co-hexafluoropropylene)

PVP

Poly(N-vinylpyrrolidone)

SPEEK

Sulfonated poly(ether ether ketone)

Anions

BF4

Tetrafluoroborate

Br

Bromide

CF3BF3

Trifluoro(trifluoromethyl)borate

C2F5BF3

(Perfluoroethyl)trifluoroborate

(CH3)2PO4

Dimethylphosphate

Cl

Chloride

DCA

Dicyanamide

H2PO4

Dihydrophosphate

HSO4

Hydrosulfate

I

Iodide

NCS

Thiocyanate

NfO

Nonafluoro-1-butanesulfonate

PF6

Hexafluorophosphate

TCB

Tetracyanoborate

TCM

Tricyanomethanide

TFA

Trifluoroacetate

TfO

Trifluoromethanesulfonate

TFSI

Bis(trifluoromethylsulfonyl)imide

Fillers

CNTs

Carbon nanotubes

ETS

Functionalized microporous titanosilicate-type material

GNSs

Graphene nanosheets

GO

Graphene oxide

rGO-PEG-NH2

2,2''-(Ethylenedioxy)bis(ethylamine) covalently linked to reduced graphene oxide

IPTS

3-(Triethoxysilyl)propyl isocyanate

LASGP

Li1.5Al0.33Sc0.17Ge1.5(PO4)3

MDA

Melamine-based dendrimer functionalized with mesoporous silica SBA-15

NaY

Sodium-type zeolite

NH4BEA

Large-pores zeolite

SiO2–poly(VPIM/TFSI)

Ionic liquid covalently bound to silica nanoparticles

SN

Succinonitrile

SWCNT

Single-wall Carbon Nanotubes

TAIC

Triallylisocyanurate

Solvents

DEC

Diethyl carbonate

DMC

Dimethyl carbonate

DME

Dimethoxyethane

DMF

Dimethylformamide

DOL

Dioxolane

EC

Ethylene carbonate

PC

Propylene carbonate

TEGDME

Tetra(ethylene glycol) dimethyl ether

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonova, L.P., Shmukler, L.E. Polymer Electrolytes Based on Polybenzimidazole, Poly(Vinylidene Fluoride-co-Hexafluoropropylene), and Ionic Liquids. Polym. Sci. Ser. A 65, 312–336 (2023). https://doi.org/10.1134/S0965545X23701080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23701080

Navigation