Skip to main content
Log in

Effects of Quercetin on Ovarian Toxicity Induced by Dietary Monosodium Glutamate

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Monosodium glutamate (MSG) is globally used to impart flavor in cooking and to improve palatability. This work assessed the protective effects of quercetin (QU) on alterations associated with exposure to MSG. Thirty female rats were equally sorted into five groups: G (I) received water and was considered the healthy control, G (II) received corn oil orally, G (III) received QU orally for 30 days, G (IV) received MSG as an oral solution (15 mg/kg body weight) for 30 days, while G (V) was given MSG and QU simultaneously. Alterations in the levels of (serum estrogen, lipid peroxidation, and glutathione), and the activity of (glutathione peroxidase, and superoxide dismutase), ovarian histological lesions, and ultrastructural changes induced by MSG administration were remarkably ameliorated on treatment with QU (14 mg/kg b. wt.). Thus, due to its antioxidant characteristics, QU might be utilized in combination with MSG to relieve ovarian toxicity brought on by MSG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abdulghani, M.A.M., Alshehade, S.A., Kamran, S., and Alshawsh, M.A., Effect of monosodium glutamate on serum sex hormones and uterine histology in female rats along with its molecular docking and in-silico toxicity, Heliyon, 2022, vol. 8, p. e10967. https://doi.org/10.1016/j.heliyon.2022.e10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdul-Hamid, M., Sanaa, R., Galaly, R., Ahmed, H., and Hamdalla, H., Histopathological and biochemical effect of quercetin on monosodium glutamate supplementation-induced testicular toxicity, Beni-Suef Univ. J. Basic. Appl. Sci., 2021, vol. 10, p. 1–13. https://doi.org/10.1186/s43088-021-00167-y

    Article  Google Scholar 

  3. Ahmed, R.R., Abdul-Hamid, M., Galaly, S.R., and Hamdalla, H.M., Monosodium glutamate-induced liver microscopic and biochemical changes in male rats, and the possible amendment of quercetin, Egypt. J Zool., 2019, vol. 71, p. 44. https://doi.org/10.21608/ejz.2019.37158

    Article  Google Scholar 

  4. Algandaby, M.M., Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on anti-oxidant, anti-inflammatory and anti-apoptotic activities, Arab. J. Chem., 2021, vol. 14, p. 103191. https://doi.org/10.1016/j.arabjc.2021.103191

    Article  CAS  Google Scholar 

  5. Amália, P.M., Possa, M.N., Augusto, M.C., and Francisca, L.S., Quercetin prevents oxidative stress in cirrhotic rats, Dig. Dis. Sci., 2007, vol. 52, p. 2616. https://doi.org/10.1007/s10620-007-9748-x

    Article  CAS  PubMed  Google Scholar 

  6. Azeem, M., Hanif, M., Mahmood, K., Ameer, N., Chughtai, FRS., and Abid, U., An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review, Polym. Bull., 2022, vol. 80, p. 1. https://doi.org/10.1007/s00289-022-04091-8

    Article  CAS  Google Scholar 

  7. Baltaci, B.B., Uygur, R., Caglar, V., Aktas, C., Aydin, M., and Ozen, O.A., Protective effects of quercetin against arsenic-induced testicular damage in rats, Andrologia, 2016, vol. 48, p. 1202. https://doi.org/10.1111/and.12561

    Article  CAS  PubMed  Google Scholar 

  8. Bancroft, J.D. and Gamble, M., Theory and Practice of Histological Techniques, Elsevier Health Sciences, 2008.

    Google Scholar 

  9. Beutler, E., Duron, O., and Kelly, B.M., Improved method for the determination of blood glutathione, J. Lab. Clin. Med., 1963, vol. 61, p. 882.

    CAS  PubMed  Google Scholar 

  10. Bozzola, J.J. and, Russell, L.D., Electron Microscopy: Principles and Techniques for Biologists, Sudbury, M.A, Ed., USA: Jones and Bartlett Publishers, 1999, 2nd ed.

  11. Cao, Y., Zhuang, M., Yang, Y., Xie, S., Cui, J., Cao, L., Zhang, T., and Zhu, Y., Preliminary study of quercetin affecting the hypothalamic–pituitary–gonadal axis on rat endometriosis model, J. Evidence-Based Complementary Altern. Med., 2014, vol. 2014, p. 781684. https://doi.org/10.1155/2014/781684

    Article  Google Scholar 

  12. Du Thie, G. and Crozier, A., Plant derived phenolic antioxidants, Curr. Opin. Clin. Nutr. Metab., 2000, vol. 3, p. 447. https://doi.org/10.1097/00075197-200011000-00006

    Article  CAS  Google Scholar 

  13. El-Shobaki, F.A., Mahmoud, M., Attia, A.E.R.M., Refaat, O.G., and El-Haggar, E., The effect of monosodium glutamate (MSG) on brain tissue, oxidation state, true cholinesterase and possible protection against health hazards using natural spices, Der. Pharm. Chem., 2016, vol. 8, p. 44.

    CAS  Google Scholar 

  14. Eweka, A.O., Eweka, A., and Om’iniabohs, F.A., Histological studies of the effects of monosodium glutamate of the fallopian tubes of adult female Wistar rats, North Am. J. Med. Sci., 2010, vol. 2, p. 146. https://doi.org/10.4297/najms.2010.3146

    Article  Google Scholar 

  15. Farhat, F., Monosodium glutamate safety, neurotoxicity and some recent studies, Az. J. Pharm Sci., 2021, vol. 64, p. 222.

    Google Scholar 

  16. Fuhrman B. and Aviram M., Flavonoids protect LDL from oxidation and attenuate atherosclerosis, Curr. Opin. Lipidol., 2001, vol. 12, p. 41. https://doi.org/10.1097/00041433-200102000-00008

    Article  CAS  PubMed  Google Scholar 

  17. Hong, Y., Yanyun, Y., Tan, Y., Hong, K., Jiang, F., and Wang, Y., Effect of quercetin on biochemical parameters in letrozole induced polycystic ovary syndrome in rats. Tropical J. Pharmaceutical Res., 2018, vol, 17, p. 1783. https://doi.org/. v17i9.15https://doi.org/10.4314/tjpr

  18. Hou, L., Liu, K., Li, Y., Ma, S., Ji, X., and Liu, L., Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis, J. Cell Sci., 2016, vol. 129, p. jcs.184374. https://doi.org/10.1242/jcs.184374

  19. Husarova, V.M. and Ostatníková, D., Monosodium glutamate toxic effects and their implications for human intake: a review, JMED Res., 2013, vol. 20135171, p. 1–12. https://doi.org/10.5171/2013.608765

    Article  Google Scholar 

  20. Islam, MS., Quispe, C., Hossain, R., Islam, MT., Al-Harrasi, A., Al-Rawahi, A., Martorell, M., Mamurova, A., Seilkhan, A., Altybaeva, N., Abdullayeva, B., Docea, AO., Calina, D., and Sharifi-Rad, J., Neuropharmacological effects of quercetin: a literature-based review, Front, Pharmacol., 2021, vol. 12, p. 665031. https://doi.org/10.3389/fphar.2021.665031

    Article  CAS  PubMed  Google Scholar 

  21. Ismail, N.H., Assessment of DNA damage in testes from young Wistar male rat treated with monosodium glutamate, Life Sci. J., 2012, vol. 9, pp. 930–939.

    Google Scholar 

  22. Isse, K., Lesniak, A., Grama, K., Roysam, B., Minervini, M.I., and Demetris, A.J., Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis, Am. J. Transplant., 2012, vol. 12, p. 27. https://doi.org/10.1111/j.1600-6143.2011.03797.x

    Article  CAS  PubMed  Google Scholar 

  23. Jahan, S., Abid, A., Khalid, S., Afsar, T., Qurat, Ul. A., Shaheen, G., Almajwal, A., and Razak, S., Therapeutic potentials of quercetin in management of polycystic ovarian syndrome using letrozole induced rat model: a histological and a biochemical study, J. Ovarian Res., 2018, vol. 11, p. 26. https://doi.org/10.1186/s13048-018-0400-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joshi, U.M., Shah, H.P., and Sudhama, S.P., A sensitive and specific enzyme immunoassay for serum testosterone, Steroids, 1979, vol. 34, p. 35. https://doi.org/ (79)90124-7https://doi.org/10.1016/0039-128x

  25. Kazmi, Z., Fatima, I., Perveen, S., and Malik, S.S., Monosodium glutamate: review on clinical reports, Int. J. Food Properties, 2017, vol. 20, p. 1807. https://doi.org/10.1080/10942912.2017.1295260

    Article  CAS  Google Scholar 

  26. Lin, C.F., Leu, Y.L., Al-Suwayeh, S.A., Ku M.C., Hwang, T.L., and Fang, JY., Anti-inflammatory activity and percutaneous absorption of quercetin and its polymethoxylated compound and glycosides: the relationships to chemical structures, Eur. J. Pharm. Sci., 2012, vol. 47, p. 857. https://doi.org/10.1016/j.ejps.2012.04.024

    Article  CAS  PubMed  Google Scholar 

  27. Mondal, M., Sarkar, K., Nath, P.P, Khatun, A., Pal, S., and Paul, G., Monosodium glutamate impairs the contraction of uterine visceral smooth muscle ex vivo of rat through augmentation of acetylcholine and nitric oxide signaling pathways, Reprod. Biol., 2018, vol. 18, p. 83. https://doi.org/10.1016/j.repbio.2018.01.006

    Article  PubMed  Google Scholar 

  28. Miśkowiak, B., Kęsa, B., Limanowski, A., Patryka, M., and Filipiak, B., Long-term effect of neonatal monosodium glutamate (MSG) treatment on reproductive system of the female rat, Folia Morphol., 1999, vol. 58, p. 105.

    Google Scholar 

  29. Mustafa, S.J., Salih, T.A., Yasseen, H.A., Marouf, B.H., and Mohammed, A.I. Effect of monosodium glutamate on mice ovaries and possible protective role of vitamin C, Ann. Appl. Bio-Sci., 2015, vol. 2, p. A100.

    Google Scholar 

  30. Naseer, Z., Ahmad, E., Epikmen, E.T., Uçan, U., Boyacioğlu, M., İpek, E., and Akosy, M., Quercetin supplemented diet improves follicular development, oocyte quality, and reduces ovarian apoptosis in rabbits during summer heat stress, Theriogenology, 2017, vol. 96, p. 136. https://doi.org/10.1016/j.theriogenology.2017.03.029

    Article  CAS  PubMed  Google Scholar 

  31. Nishikimi, M., Appaji, N., and Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. Biophys. Res. Commun., 1972, vol. 46, p. 849. https://doi.org/10.1016/s0006-291x(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  32. Oladipo I., Debayo, E.A A., and Kuye, M., Effects of monosodium glutamate in ovaries of female Sprague–Dawley rats, Int. J. Curr. Microbiol. App. Sci., 2015, vol. 4, p. 737.

    CAS  Google Scholar 

  33. Paglia, D.E. and Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med., 1967, vol. 70, p. 158.

    CAS  PubMed  Google Scholar 

  34. Papiez, M.A., Cierniak, A., Krzysciak, W., Bzowska, M., Taha, H.M., Jozkowicz, A., and Piskula, M., The changes of antioxidant defense system caused by quercetin administration do not lead to DNA damage and apoptosis in the spleen and bone marrow cells of rats, Food Chem. Toxicol., 2008, vol. 46, p. 3053. https://doi.org/10.1016/j.fct.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  35. Patel, R.V., Mistry, B.M., Shinde, S.K., Syed, R., Singh, V., and Shin, H.-S., Therapeutic potential of quercetin as a cardiovascular agent, Eur. J. Med. Chem., 2018, vol. 155, p. 889. https://doi.org/10.1016/j.ejmech.2018.06.053

    Article  CAS  PubMed  Google Scholar 

  36. Pavlovic, V., Pavlovic, D., Kocic, G., Sokolovic, D., Jevtovic-Stoimenov, T., Cekic, S., and Velickovic, D., Effect of monosodium glutamate on oxidative stress and apoptosis in rat thymus, Mol. Cell. Biochem., 2007, vol. 303, p. 161. https://doi.org/10.1007/s11010-007-9469-7

    Article  CAS  PubMed  Google Scholar 

  37. Prabu, S.M., Tomczyk, M., Skalicka-Woźniak, K., Rastrelli, L., Daglia, M., Nabavi, S., Alavian, S., and Nabavi, S., Hepatoprotective effect of quercetin: from chemistry to medicine, Food Chem. Toxicol., 2016, vol. 108. https://doi.org/10.1016/j.fct.2016.08.034

  38. Preuss, H.G., Jarrell, S.T., Scheckenbach, R., Lieber-man, S., and Anderson, R.A., Comparative effects of chromium, vanadium and gymnema sylvestre on sugar-induced blood pressure elevations in SHR, J. Am. Coll. Nutr., 1998, vol. 17, p. 116. https://doi.org/10.1080/07315724.1998.10718736

    Article  CAS  PubMed  Google Scholar 

  39. Ragab, E.E., The possible protective effect of vitamin C on monosodium glutamate induced renal toxicity in male albino rats, Egypt. J. Histol., 2018, vol. 41, p. 386. https://doi.org/10.21608/ejh.2019.28760

    Article  Google Scholar 

  40. Rim, K.T., Toxicological evaluation of MSG for the manufacturing workers health: a literature review, Toxicol. Environ. Health Sci., 2017, vol, 9, p. 1. https://doi.org/10.1007/s13530-017-0297-1

    Article  Google Scholar 

  41. Shannon, M., Wilson, J., Xie, Y., and Connolly, L., In vitro bioassay investigations of suspected obesogen monosodium glutamate at the level of nuclear receptor binding and steroidogenesis, Toxicol. Lett., 2019, vol. 301, p. 11. https://doi.org/10.1016/j.toxlet.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  42. Sharma, A., Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review, J. Biomed. Sci., 2015, vol. 22, p. 93. https://doi.org/10.1186/s12929-015-0192-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silvestris, E., Lovero, D., and Palmirotta, R., Nutrition and female fertility: an interdependent correlation, Front. Endocrinol. (Lausanne), 2019, vol. 10, p. 346. https://doi.org/10.3389/fendo.2019.00346

    Article  Google Scholar 

  44. Sun, J., Zhang, X., Cao, Y., Zhao, Q., Bao, E., and Lv, Y., Ovarian toxicity in female rats after oral administration of melamine or melamine and cyanuric acid, PLoS One, 2016, vol. 11, p. e0149063. https://doi.org/10.1371/journal.pone.0149063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ugur, S., Kılınc, O., and Selamoglu, Z., Antioxidant activity of quercetin: a mechanistic review, Turk. J. Agric. For., 2016, vol. 4, pp. 11–34. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069

    Article  Google Scholar 

  46. Umukoro, S., Oluwole, G.O., Olamijowon, H.E., Omogbiya, A.I., and Eduviere, A.T., Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice, World J. Neurosci., 2015, vol. 5, p. 339. https://doi.https://doi.org/10.4236/wjns.2015.55033

  47. Yang, D., Wang, T., Long, M., and Li, P., Quercetin: its main pharmacological activity and potential application in clinical medicine, Oxid. Med. Cell Longev., 2020, vol. 2020, p. 8825387. https://doi.org/10.1155/2020/8825387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yousef, M. I, Omar, S.A., El-Guendi, M.I., and Abdelmegid, L.A., Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat, Food Chem. Toxicol., 2010, vol. 48, p. 3246. https://doi.org/10.1016/j.fct.2010.08.034

    Article  CAS  PubMed  Google Scholar 

  49. Zia, M.S., Qamar, K., Hanif, R., and Khalil, M., Effect of monosodium glutamate on the serum estrogen and progesterone levels in female rat and prevention of this effect with diltiazem, J. Ayub. Med. Coll. Abbottabad, 2014, vol. 26, p. 18.

    PubMed  Google Scholar 

Download references

Funding

This study was not funded by any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal Abdul-Hamid.

Ethics declarations

Conflict of interest. Research workers claim that they have no known competing financial profits or personal relationships that could have seemed to influence the work delivered in this paper.

Statement on the welfare of animals. All treatments involving animals were carried out in accordance with the criteria and regulations established by the Animal Ethics Committee of the Zoology Department, Faculty of Science, Beni-Suef University (approval number: BSU/FS/ 2015/9).

Additional information

Abbreviations: H&E—hematoxylin and eosin, MSG—monosodium glutamate, b. wt.—body weight, QU—quercetin, MDA— malondialdehyde, LPO—lipid peroxidation, GSH—Glutathione, GSH-Px—glutathione peroxidase, SOD—superoxide dismutase, ROS—reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdalla, H.M., Ahmed, R.R., Galaly, S.R. et al. Effects of Quercetin on Ovarian Toxicity Induced by Dietary Monosodium Glutamate. Cell Tiss. Biol. 17, 543–556 (2023). https://doi.org/10.1134/S1990519X2305005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2305005X

Keywords:

Navigation