Skip to main content
Log in

General Patterns of Salinity Influence on the Energy Balance of Aquatic Animals in Hypersaline Environment

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The energy balance approach based on the principles of thermodynamics makes it possible only to outline the area of the possible and to cut off what cannot be. It is widely used in hydrobiology/ecology to describe ecosystems but very rarely to understand certain empirically found patterns. In the article, on the basis of the generalization and analysis of our own and published data, several empirical generalizations have been made concerning the effect of salinity in the hypersaline range from 35 to 300 g/L on animals, which were analyzed using the energy balance approach. According to the type of osmoadaptive mechanisms, animals are divided into active osmoregulators of salt concentration in body fluids and osmoconformers with osmoadaptation performed inside the cells (the accumulation of osmolytic substances) as in unicellular organisms. Osmoconformer animals are able not only to synthesize different types of osmolytes per se but also to use osmolytes of consumed primary producers or dissolved organic matter. With an increase in salinity above the optimum for both types, there is an increase in energy expenditure for the operation of these mechanisms. The upper limit of halotolerance in osmoconformers can be primarily determined by the presence of available osmolytes in the environment rather than by physiological characteristics of a species. The increase in salinity, in proportion to the increased viscosity of solution, is accompanied by an increase in the cost of movement for all animals. Hence, the costs of movement will tend to the maximum possible, sharply limiting the possibilities of locomotor activity. This reduces the possibility of obtaining the necessary diet. Thus, empirical generalization is as follows: as salinity increases above the optimal level, the total metabolic costs will increase and the resulting diet will decrease. The analysis of this generalization based on the energy balance approach leads to certain conclusions: (1) the possible definitive size will decrease with increasing salinity, as is observed in nature and in experiments; (2) the higher the concentration of food, the less pronounced is this effect; (3) a decrease in body weight allows a species to exist in wider ranges of salinity and food concentration. This, first of all, can explain the fact that an increase in salinity and other unfavorable/stress conditions result in “dropping out” of large-sized animal species from the community in the first place, as is observed in nature. The energy balance approach can be used to understand the revealed empirical patterns. At the same time, it only outlines the areas of the possible and defined the trends, not to mention specific realizations of those possibilities and their mechanisms. It cannot provide understanding of the uniqueness of specific complex processes and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aladin, N.V., Salinity adaptations and evolution of osmoregulatory abilities within the classes Ostracoda and Branchiopoda, Tr. Zool. Inst. Akad. Nauk SSSR, 1987, vol. 160, pp. 106–126.

    Google Scholar 

  2. Aladin, N.V., General characteristics of hydrobionts of the Aral Sea from the point of view of the osmo-regulation physiology, Tr. Zool. Inst. Akad. Nauk SSSR, 1990, vol. 223, pp. 5–18.

    Google Scholar 

  3. Alexander, R.M., Principles of Animal Locomotion, Princeton: Princeton Univ. Press, 2003.

    Google Scholar 

  4. Alimov, A.F., Bogatov, V.V., and Golubkov, S.M., Produktsionnaya gidrobiologiya (Production Hydrobiology), St. Petersburg: Nauka, 2013.

  5. Allan, E.L., Froneman, P.W., and Hodgson, A.N., Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi, J. Exp. Mar. Biol. Ecol., 2006, vol. 337, no. 1, pp. 103–108. https://doi.org/10.1016/j.jembe.2006.06.006

    Article  CAS  Google Scholar 

  6. Anderson, J.W. and Stephens, G.C., Uptake of organic material by aquatic invertebrates. VI. Role of epiflora in apparent uptake of glycine by marine crustaceans, Mar. Biol., 1969, vol. 4, no. 3, pp. 243–249. https://doi.org/10.1007/BF00393901

    Article  CAS  Google Scholar 

  7. Anufriieva, E.V., Do copepods inhabit hypersaline waters worldwide? A short review and discussion, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1354–1361. https://doi.org/10.1007/s00343-014-4385-7

    Article  CAS  Google Scholar 

  8. Anufriieva, E.V., Cyclopoida in hypersaline waters of the Crimea and the world: Diversity, the impact of environmental factors, ecological role, J. Sib. Fed. Univ. Biol., 2016, vol. 9, no. 4, pp. 398–408.

    Article  Google Scholar 

  9. Anufriieva, E.V. and Shadrin, N.V., The swimming behavior of Artemia (Anostraca): New experimental and observational data, Zoology, 2014a, vol. 117, no. 6, pp. 415–421. https://doi.org/10.1016/j.zool.2014.03.006

    Article  PubMed  Google Scholar 

  10. Anufriieva, E.V. and Shadrin, N.V., Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations, Zool. Res., 2014b, vol. 35, pp. 132–141.

    Google Scholar 

  11. Anufriieva, E.V. and Shadrin, N.V., Arctodiaptomus salinus (Daday, 1885) (Calanoida, Copepoda) in saline water bodies of the Crimea, Mor. Ekol. Zh., 2014c, vol. 13, no. 3, pp. 5–11.

    Google Scholar 

  12. Anufriieva, E.V. and Shadrin, N.V., Diversity of fauna in Crimean hypersaline water bodies, J. Sib. Fed. Univ. Biol., 2018, vol. 11, no. 4, pp. 294–305. https://doi.org/10.17516/1997-1389-0073

    Article  Google Scholar 

  13. Arjona, F.J., Vargas-Chacoff, L., Ruiz-Jarabo, I., Martín del Río, M.P., and Mancera, J.M., Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, vol. 148, no. 2, pp. 413–421. https://doi.org/10.1016/j.cbpa.2007.05.026

    Article  CAS  Google Scholar 

  14. Barnes, B.D. and Wurtsbaugh, W.A., The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: A microcosm experiment, Can. J. Fish. Aquat. Sci., 2015, vol. 72, no. 6, pp. 807–817. https://doi.org/10.1139/cjfas-2014-0396

    Article  CAS  Google Scholar 

  15. Beck, J.L. and Turingan, R.G., The effects of zooplankton swimming behavior on prey-capture kinematics of red drum larvae, Sciaenops ocellatus, Mar. Biol., 2007, vol. 151, no. 4, pp. 1463–1470. https://doi.org/10.1007/s00227-006-0598-4

    Article  Google Scholar 

  16. Carbonnel, G., Morphometrie et hypersalinite chez Cyprideis torosa (Jones) (Ostracoda, Actuel) dans les Salines de Santa-Pola (Alicante, Espagne), Sci. Geol., Bull., 1983, vol. 36, pp. 211–219.

    Article  Google Scholar 

  17. Chebotareva, N.A., Effect of molecular crowding on the enzymes of glycogenolysis, Biochemistry (Moscow), 2007, vol. 72, no. 13, pp. 1478–1490.

    Article  CAS  PubMed  Google Scholar 

  18. Cowles, D.L. and Childress, J.J., Swimming speed and oxygen consumption in the bathypelagic mysid Gnathophausia ingens, Biol. Bull., 1988, vol. 175, no. 1, pp. 111–121. https://doi.org/10.2307/1541898

    Article  Google Scholar 

  19. Dagaeva, V.N., Observations on the life of a salt lake near the Kruglyaya Bay near Sevastopol, Izv. Akad. Nauk SSSR., Ser. VI, 1927, vol. 21, no. 7, pp. 1319–1346.

    Google Scholar 

  20. Day, O.J., Jones, D.A., and Howell, B.R., Food consumption, growth and respiration of sole, Solea solea (L.), during early ontogeny in a hatchery environment, Aquacult. Res., 1996, vol. 27, no. 11, pp. 831–839. https://doi.org/10.1046/j.1365-2109.1996.t01-1-00800.x

    Article  Google Scholar 

  21. Detkova, E.N. and Boltyanskaya, Y.V., Osmoadaptation of haloalkaliphilic bacteria: Role of osmoregulators and their possible practical application, Microbiology, 2007, vol. 76, no. 5, pp. 511–522.

  22. Dickson, I.W. and Kramer, R.H., Factors influencing scope for activity and active and standard metabolism of rainbow trout (Salmo gairdneri), J. Fish. Res. Board Can., 1971, vol. 28, no. 4, pp. 587–596. https://doi.org/10.1139/f71-082

    Article  Google Scholar 

  23. Dwivedi, S.N., Diwan, A.D., and Iftekhar, M.B., Oxygen uptake in the brine shrimp Artemia in relation to salinity, Indian J. Fish, 1987, vol. 34, pp. 359–361.

    Google Scholar 

  24. El-Gamal, M.M., Respiration of Artemia franciscana cultured under different salinities, Anim. Biol., 2011, vol. 61, no. 4, pp. 413–425. https://doi.org/10.1163/157075511X596891

    Article  Google Scholar 

  25. Ern, R. and Esbaugh, A.J., Effects of salinity and hypoxia-induced hyperventilation on oxygen consumption and cost of osmoregulation in the estuarine red drum (Sciaenops ocellatus), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 3028, vol. 222, pp. 52–59. https://doi.org/10.1016/j.cbpa.2018.04.013

  26. Ern, R., Huong, D.T., Cong, N.V., Bayley, M., and Wang, T., Effect of salinity on oxygen consumption in fishes: A review, J. Fish Biol., 2014, vol. 84, no. 4, pp. 1210–1220. https://doi.org/10.1111/jfb.12330

    Article  CAS  PubMed  Google Scholar 

  27. Farmer, G.J. and Beamish, F.W., Oxygen consumption of Tilapia nilotica in relation to swimming speed and salinity, J. Fish. Res. Board Can., 1969, vol. 26, no. 11, pp. 2807–2021. https://doi.org/10.1139/f69-277

    Article  CAS  Google Scholar 

  28. Finney, C.M., Salinity stress in harpacticoid copepods, Estuaries, 1979, vol. 2, pp. 132–135. https://doi.org/10.2307/1351640

    Article  Google Scholar 

  29. Gajardo, G.M. and Beardmore, J.A., The brine shrimp Artemia: Adapted to critical life conditions, Front. Physiol., 2012, vol. 3, p. 185. https://doi.org/10.3389/fphys.2012.00185

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilchrist, B.M., The oxygen consumption of Artemia salina (L.), Hydrobiologia, 1958, vol. 12, no. 1, pp. 27–37. https://doi.org/10.1007/BF00035925

    Article  Google Scholar 

  31. Gilles, R., Mechanisms of Osmoregulation in Animals, New-York: Wiley, 1979.

  32. Gillikin, D.P., Osmoregulatory ability of Chiromantes ortmanni (Crosnier, 1965) subjected to dilute and hypersaline seawater, Crustaceana, 2004, vol. 77, no. 1, pp. 67–74. https://doi.org/10.1163/156854004323037892

    Article  Google Scholar 

  33. Gonzalez, R.J., Cooper, J., and Head, D., Physiological responses to hyper-saline waters in sailfin mollies (Poecilia latipinna), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2005, vol. 142, no. 4, pp. 397–403. https://doi.org/10.1016/j.cbpa.2005.08.008

    Article  CAS  Google Scholar 

  34. Gracia-López, V., Rosas-Vázquez, C., and Brito-Pérez, R., Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2006, vol. 145, no. 3, pp. 340–345. https://doi.org/10.1016/j.cbpa.2006.07.008

    Article  CAS  Google Scholar 

  35. Hammer, U.T., Saline Lake Ecosystems of the World, Dordrecht: Dr. W. Junk,1986.

    Google Scholar 

  36. Hedgpeth, J.W., Some preliminary considerations of the biology of inland mineral waters, Arch. Oceanogr. Limnol., 1959, vol. 11, pp. 111–141.

    Google Scholar 

  37. Herbst, D.B., Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk, Wetlands, 2006, vol. 26, no. 2, pp. 475–485.

    Article  Google Scholar 

  38. Hernández-Sandoval, P., Díaz, F., Re-Araujo, A.D., López-Sánchez, J.A., Martínez-Valenzuela, M.D., et al., Thermal preference, critical thermal limits, oxygen routine consumption and active metabolic scope of Macrobrachium tenellum (Smith, 1871) maintained at different acclimation temperatures, Lat. Am. J. Aquat. Res., 2018, vol. 46, no. 3, pp. 558–569. https://doi.org/10.3856/V46-Issue3-fulltext-9

    Article  Google Scholar 

  39. Hickman, C.S., Mollusc-microbe mutualisms extend the potential for life in hypersaline systems, Astrobiology, 2003, vol. 3, no. 3, pp. 631–644. https://doi.org/10.1089/153110703322610717

    Article  PubMed  Google Scholar 

  40. Hossain, M.A., Ye, Q., Leterme, S.C., and Qin, J.G., Spatial and temporal changes of three prey-fish assemblage structure in a hypersaline lagoon: The Coorong, South Australia, Mar. Freshwater Res., 2017a, vol. 68, no. 2, pp. 282–292. https://doi.org/10.1071/MF15212

    Article  Google Scholar 

  41. Hossain, M.A., Hemraj, D.A., Ye, Q., Leterme, S.C., and Qin, J.G., Diet overlap and resource partitioning among three forage fish species in Coorong, the largest inverse estuary in Australia, Environ. Biol. Fishes, 2017b, vol. 100, pp. 639–654. https://doi.org/10.1007/s10641-017-0592-3

    Article  Google Scholar 

  42. Irwin, S., Wall, V., and Davenport, J., Measurement of temperature and salinity effects on oxygen consumption of Artemia franciscana K., measured using fibre-optic oxygen microsensors, Hydrobiologia, 2207, vol. 575, no. 1, pp. 109–115. https://doi.org/10.1007/s10750-006-0358-y

  43. Ivlev V.S., Hunt time and the path traveled by a predator in relation to the density of the prey population, Zool. Zh., 1944, vol. 23, no. 4, pp. 139–145.

    Google Scholar 

  44. Ivlev V.S., Eksperimental’naya ekologiya pitaniya ryb (Experimental Ecology of Fish Nutrition), Kiev: Naukova Dumka, 1977.

  45. Ivleva, I.V., Temperatura sredy i skorost’ energeticheskogo obmena u vodnykh zhivotnykh (Environmental Temperature and Rate of Energy Metabolism in Aquatic Animals), Kiev: Naukova Dumka, 1981.

  46. Iwama, G.K., Takemura, A., and Takano, K., Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water, J. Fish Biol., 1997, vol. 51, no. 5, pp. 886–894. https://doi.org/10.1111/j.1095-8649.1997.tb01528.x

    Article  Google Scholar 

  47. Jeschke, J.M., Kopp, M., and Tollrian, R., Predator functional responses: Discriminating between handling and digesting prey, Ecol. Monogr., 2002, vol. 72, pp. 95–112. https://doi.org/10.1890/0012-9615(2002)072[0095:PF-RDBH]2.0.CO;2

    Article  Google Scholar 

  48. Kang, S.R. and King, S.L., Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh, Aquat. Ecol., 2012, vol. 46, no. 4, pp. 411–420. https://doi.org/10.1007/s10452-012-9410-3

    Article  Google Scholar 

  49. Khailov, K.M. and Erokhin, V.E., Issues of DOM utilization by crustaceans Tigriopus brevicornis and Calanus Finmarchicus, Okeanologiya, 1978, vol. 11, no. 1, pp. 117–126.

    Google Scholar 

  50. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity of Biological Processes), Leningrad: Nauka, 1974.

  51. Khlebovich, V.V., Ocherki ekologii osobi (Essays on the Ecology of an Individual), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 2012.

  52. Khlebovich, V.V. and Aladin, N.V., The salinity factor in animal life, Herald. Russ. Acad. Sci., 2010, vol. 80, no. 3, pp. 299–304.

    Article  Google Scholar 

  53. Kokkinn, M.J., Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont Chironomid, Tanytarsus barbitarsis Freeman, Aust. J. Mar. Freshwater Res., 1986, vol. 37, no. 2, pp. 243–250. https://doi.org/10.1071/MF9860243

    Article  Google Scholar 

  54. Komendantov, A.Yu. and Khlebovich, V.V., Salinity dependence of absorption of dissolved organic substances by aquatic invertebrates, Tr. Zool. Inst. Akad. Nauk SSSR, 1989, vol. 196, pp. 22–50.

    Google Scholar 

  55. Lee, C.E., Moss, W.E., Olson, N., Chau, K.F., Chang, Y.M., and Johnson, K.E., Feasting in fresh water: Impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats, Evol. Appl., 2013, vol. 6, no. 4, pp. 673–689. https://doi.org/10.1111/eva.12054

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee, J., Cho, B.C., and Park, J.S., Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities, Mar. Genomics, 2022, vol. 61, p. 100919. https://doi.org/10.1016/j.margen.2021.100919

    Article  CAS  PubMed  Google Scholar 

  57. Lindley, L.C., Phelps, R.P., Davis, D.A., and Cummins, K.A., Salinity acclimation and free amino acid enrichment of copepod nauplii for first-feeding of larval marine fish, Aquaculture, 2011, vol. 318, nos. 3–4, pp. 402–406. https://doi.org/10.1016/j.aquaculture.2011.05.050

    Article  CAS  Google Scholar 

  58. Marshall, D.J., Perissinotto, R., and Holley, J.F., Respiratory responses of the mysid Gastrosaccus brevifissura (Peracarida: Mysidacea), in relation to body size, temperature and salinity, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2003, vol. 134, no. 2, pp. 257–266. https://doi.org/10.1016/S1095-6433(02)00258-1

    Article  Google Scholar 

  59. McAllen, R. and Taylor, A., The effect of salinity change on the oxygen consumption and swimming activity of the high-shore rockpool copepod Tigriopus brevicornis, J. Exp. Mar. Biol. Ecol., 2001, vol. 263, no. 2, pp. 227–240. https://doi.org/10.1016/S0022-0981(01)00308-2

    Article  Google Scholar 

  60. Mezquita, F., Olmos, V., and Oltra, R., Population ecology of Cyprideis torosa (Jones, 1850) in a hypersaline environment of the Western Mediterranean (Santa Pola, Alacant) (Crustacea: Ostracoda), Ophelia, 2000, vol. 53, no. 2, pp. 119–130. https://doi.org/10.1080/00785236.2000.10409442

    Article  Google Scholar 

  61. Michalec, F.G., Holzner, M., Hwang, J.S., and Souissi, S., Three dimensional observation of salinity-induced changes in the swimming behavior of the estuarine calanoid copepod Pseudodiaptomus annandalei, J. Exp. Mar. Biol. Ecol., 2012, vol. 438, pp. 24–31. https://doi.org/10.1016/j.jembe.2012.09.013

    Article  Google Scholar 

  62. Mirzoyeva, N.Y., Anufriieva, E.V., Shadrin, N.V., Gamma radiation effect of partnogenetic Artemia (Branchiopoda, Anostraca) cysts on nauplius hatching and postnauplius survival under different salinity, Povolzh. Zh. Ekol., 2018, no. 4, pp. 418–432. https://doi.org/10.18500/1684-7318-2018-4-418-432

  63. Moens, L., Wolf, G., van Hauwaert, M.L., de Baere, I., and van Beeumen, J., et al., The extracellular hemoglobins of Artemia: Structure of the oxygen carrier and respiration physiology, in Artemia Biology, New-York: CRC, 1991, pp. 187–220.

  64. Morris, M.J., Gust, G., and Torres, J.J., Propulsion efficiency and cost of transport for copepods: A hydromechanical model of crustacean swimming, Mar. Biol., 1985, vol. 86, no. 3, pp. 283–295. https://doi.org/10.1007/BF00397515

    Article  Google Scholar 

  65. Nelson, J., Tang, Y.O., and Boutilier, R., The effects of salinity change on the exercise performance of two Atlantic cod (Gadus morhua) populations inhabiting different environments, J. Exp. Biol., 1996, vol. 199, no. 6, pp. 1295–1309.

    Article  CAS  PubMed  Google Scholar 

  66. Normant, M. and Lamprecht, I., Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus?, J. Exp. Mar. Biol. Ecol., 2006, vol. 334, no. 1, pp. 158–163. https://doi.org/10.1016/j.jembe.2006.01.022

    Article  Google Scholar 

  67. Oren, A., Thermodynamic limits to microbial life at high salt concentrations, Environ. Microbiol., 2011, vol. 13, no. 8, pp. 1908–1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x

    Article  CAS  PubMed  Google Scholar 

  68. Patrick, M.L. and Bradley, T.J., Regulation of compatible solute accumulation in larvae of the mosquito Culex tarsalis: Osmolarity versus salinity, J. Exp. Biol., 2000, vol. 203, pp. 831–839. https://doi.org/10.1242/jeb.203.4.831

    Article  CAS  PubMed  Google Scholar 

  69. Pechen’-Finenko, G.A., Abolmasova, G.I., and Romanova, Z.A., Energy budget of two isopod species, Ekol. Morya, 1986, no. 23, pp. 54–64.

  70. Plotnikov, I.S., Mnogoletnie izmeneniya fauny svobodnozhivushchikh vodnykh bespozvonochnykh Aral’skogo morya (Long-Term Changes in the Fauna of Free-Living Aquatic Invertebrates of the Aral Sea), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 2016.

  71. Renault, D., Lombard, M., Vingére, J., and Laparie, M., Comparative salinity tolerance in native flies from the subantarctic Kerguelen islands: A metabolomic approach, Polar Biol., 2016, vol. 39, pp. 47–56. https://doi.org/10.1007/s00300-014-1605-8

    Article  Google Scholar 

  72. Resgalla, C., Jr., Brasil, E.D., and Salomão, L.C., The effect of temperature and salinity on the physiological rates of the mussel Perna perna (Linnaeus, 1758), Braz. Arch. Biol. Technol., 2007, vol. 50, no. 3, pp. 543–556. https://doi.org/10.1590/S1516-89132007000300019

    Article  CAS  Google Scholar 

  73. Rippingale, R.J. and Hodgkin, E.P., Food availability and salinity tolerance in a brackish water copepod, Aust. J. Mar. Freshwater Res., 1977, vol. 28, no. 1, pp. 1–7. https://doi.org/10.1071/MF9770001

    Article  Google Scholar 

  74. Rivera-Ingraham, G.A., Nommick, A., Blondeau-Bidet, E., Ladurner, P., and Lignot, J.H., Salinity stress from the perspective of the energy-redox axis: Lessons from a marine intertidal flatworm, Redox Biol., 2016, vol. 10, pp. 53–64. https://doi.org/10.1016/j.redox.2016.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rivera-Ingraham, G.A. and Lignot, J.H., Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research, J. Exp. Biol., 2017, vol. 220, no. 10, pp. 1749–1760. https://doi.org/10.1071/MF9770001

    Article  PubMed  Google Scholar 

  76. Rokneddine, A., The influence of salinity and temperature on the growth of Arctodiaptomus salinus (Daday, 1885) (Copepoda, Calanoida), from the temporary salt marsh, “La Sebkha Zima,” Morocco, Crustaceana, 2004, vol. 77, no. 9, pp. 1025–1044. https://doi.org/10.1163/1568540042900259

    Article  Google Scholar 

  77. Rosewarne, P.J., Wilson, J.M., and Svendsen, J.C., Measuring maximum and standard metabolic rates using intermittent-flow respirometry: A student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers, J. Fish Biol., 2016, vol. 88, no. 1, pp. 265–283. https://doi.org/10.1111/jfb.12795

    Article  CAS  PubMed  Google Scholar 

  78. Röthig, T., Ochsenkühn, M.A., Roik, A., van der Merwe, R., and Voolstra, C.R., Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome, Mol. Ecol., 2016, vol. 25, no. 6, pp. 1308–1323. https://doi.org/10.1111/mec.13567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sacco, M., White, N.E., Harrod, C., Salazar, G., Aguilar, P., et al., Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems, Biol. Rev., 2021, vol. 96, no. 6, pp. 2828–2850. https://doi.org/10.1111/brv.12780

    Article  PubMed  Google Scholar 

  80. Seuront, L., Hwang, J.S., Tseng, L.C., Schmitt, F.G., Souissi, S., and Wong, C.K., Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida), Mar. Ecol.: Prog. Ser., 2004, vol. 283, pp. 199–217. https://doi.org/10.3354/meps283199

    Article  Google Scholar 

  81. Shadrin, N.V., Some theoretical aspects of copepod nutrition, in Ekologiya morskikh organizmov (Ecology of Marine Organisms), Kiev: Naukova Dumka, 1981, pp. 38–44.

  82. Shadrin, N.V., Influence of biotic factors on the energy balance of hydrobionts, in Bioenergetika gidrobiontov (Bioenergetics of Hydrobionts), Kiev: Naukova Dumka, 1990, pp. 102–118.

  83. Shadrin, N.V., Did energy budget approach exhaust itself in hydrobiology: Possibilities and limitations, Morsk. Ekol. Zh., 2011, vol. 10, no. 1, pp. 98–103.

    Google Scholar 

  84. Shadrin, N.V. and Anufriieva, E.V., Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: New data and a hypothesis, J. Mediterr. Ecol., 2013, vol. 12, pp. 21–26.

    Google Scholar 

  85. Shadrin, N.V. and Anufriieva, E.V., Structure and trophic relations in hypersaline environments, Biol. Bull. Rev., 2020, vol. 10, no. 1, pp. 48–56. https://doi.org/10.1134/S2079086420010065

    Article  Google Scholar 

  86. Shadrin, N.V., Anufriieva, E.V., Belyakov, V.P., and Bazhora, A.I., Chironomidae larvae in hypersaline waters of the Crimea: Diversity, distribution, abundance and production, Eur. Zool. J., 2017, vol. 84, no. 1, pp. 61–72. https://doi.org/10.1080/11250003.2016.1273974

    Article  CAS  Google Scholar 

  87. Shadrin, N.V., Belyakov, V.P., Bazhora, A.I., and Anufriieva, E.V., The role of salinity as an environmental filtering factor in the determination of the Diptera taxonomic composition in the Crimean waters, Knowl. Manage. Aquat. Ecosyst., 2019a, no. 420, p. 3. https://doi.org/10.1051/kmae/2020024

  88. Shadrin, N.V., Belyakov, V.P., Bazhora, A.I., and Anufriieva, E.V., Does salinity affect body proportions and “size/mass” ratios of highly halotolerant baeotendipes noctivagus larvae (Diptera, Chironomidae)?, Oceanol. Hydrobiol. Stud., 2019b, vol. 48, no. 4, pp. 305–315. https://doi.org/10.2478/ohs-2019-0028

    Article  CAS  Google Scholar 

  89. Shadrin, N., Kolesnikova, E., Revkova, T., Latushkin, A., Chepyzhenko, A., et al., Macrostructure of benthos along a salinity gradient: The case of Sivash Bay (the Sea of Azov), the largest hypersaline lagoon worldwide, J. Sea Res., 2019c, vol. 154, p. 101811. https://doi.org/10.1016/j.seares.2019.101811

    Article  Google Scholar 

  90. Shadrin, N., Yakovenko, V., and Anufriieva, E., Behavior of Gammarus aequicauda (Crustacea, Amphipoda) during predation on Artemia (Crustacea, Anostraca): New experimental results, Int. Rev. Hydrobiol., 2020, vol. 105, nos. 5–6, pp. 143–150. https://doi.org/10.1002/iroh.202002059

    Article  Google Scholar 

  91. Shock, B.C., Foran, C.M., and Stueckle, T.A., Effects of salinity stress on survival, metabolism, limb regeneration, and ecdysis in Uca pugnax, J. Crustacean Biol., 2009, vol. 29, no. 3, pp. 293–301. https://doi.org/10.1651/08-2990.1

    Article  Google Scholar 

  92. Siebers, D. and Bulnheim, H.P., Salinity dependence, uptake kinetics and specificity of amino acid absorption across the body surphase of the oligochaete annelid Enchytraeus albidus, Helgol. Wiss. Meeresunters., 1977, vol. 29, no. 4, pp. 473–492. https://doi.org/10.1007/BF01609985

  93. Sims, D.W., Southall, E.J., and Humphries, N.E., Scaling laws of marine predator search behavior, Nature, 2008, vol. 451, pp. 1098–1102. https://doi.org/10.1038/nature06518

    Article  CAS  PubMed  Google Scholar 

  94. Skadhauge, E. and Lotan, R., Drinking rate and oxygen consumption in the euryhaline teleost Aphanius dispar in waters of high salinity, J. Exp. Biol., 1974, vol. 60, no. 2, pp. 547–556.

    Article  CAS  PubMed  Google Scholar 

  95. Smith, E.B., Scott, K.M., Nix, E.R., Korte, C., and Fisher, C.R., Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico brine pool, Ecology, 2000, vol. 81, no. 9, pp. 2392–2403. https://doi.org/10.2307/177462

    Article  Google Scholar 

  96. Stephens, G., C., Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish water annelids, Biol. Bull., 1964, vol. 126, no. 1, pp. 150–162. https://doi.org/10.2307/1539425

    Article  CAS  Google Scholar 

  97. Stephens, G.C., Dissolved organic matter as a potential source of nutrition for marine organisms, Am. Zool., 1968, vol. 8, no. 1, pp. 95–106. https://doi.org/10.1093/icb/8.1.95

    Article  Google Scholar 

  98. Stephens, G.C. and Virkar, R.A., Uptake of organic material by aquatic invertebrates. IV. The influence of salinity on the uptake of amino acids by the brittle star, Ophiactis arenosa, Biol. Bull., 1966, vol. 131, no. 1, pp. 172–185. https://doi.org/10.2307/1539657

    Article  CAS  PubMed  Google Scholar 

  99. Sushchenya, L.M., Kolichestvennye zakonomernosti pitaniya rakoobraznykh (Quantitative Patterns of Nutrition of Crustaceans), Minsk: Nauka Tekh., 1975.

  100. Svetlichny, L., Hubareva, E., Isinibilir, M., Kideys, A., Belmonte, G., and Giangrande, E., Salinity tolerance of Calanus euxinus in the Black and Marmara Seas, Mar. Ecol.: Prog. Ser., 2010, vol. 404, pp. 127–138. https://doi.org/10.3354/meps08475

    Article  Google Scholar 

  101. Svetlichny, L., Hubareva, E., and Isinibilir, M., Comparative trends in respiration rates, sinking and swimming speeds of copepods Pseudocalanus elongatus and Acartia clausi with comments on the cost of brooding strategy, J. Exp. Mar. Biol. Ecol., 2017, vol. 488, pp. 24–31. https://doi.org/10.1016/j.jembe.2016.12.005

    Article  Google Scholar 

  102. Swanson, C., Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos), J. Exp. Biol., 1998, vol. 201, no. 24, pp. 3355–3366.

    Article  PubMed  Google Scholar 

  103. Torres, J.J. and Childress, J.J., Relationship of oxygen consumption to swimming speed in Euphausia pacifica, Mar. Biol., 1983, vol. 74, no. 1, pp. 79–86. https://doi.org/10.1007/BF00393008

    Article  Google Scholar 

  104. Uliano, E., Cataldi, M., Carella, F., Migliaccio, O., Iaccarino, D., and Agnisola, C., Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2010, vol. 157, no. 3, pp. 283–290. https://doi.org/10.1016/j.cbpa.2010.07.019

    Article  CAS  Google Scholar 

  105. Van Harten, D., Cyprideis torosa (Ostracoda) revisited. Of salinity, nodes and shell size, in Proc. 2nd European Ostracodologists Meeting, London: Br. Micropalaeontol. Soc., 1996, pp. 191–194.

  106. Verslycke, T. and Janssen, C.R., Effects of a changing abiotic environment on the energy metabolism in the estuarine mysid shrimp Neomysis integer (Crustacea: Mysidacea), J. Exp. Mar. Biol. Ecol., 2002, vol. 279, nos. 1–2, pp. 61–72. https://doi.org/10.1016/S0022-0981(02)00339-8

    Article  Google Scholar 

  107. Vieira, A.G.F., Jr., Lima, D.E.P.C., Sales, N.D.S., Terra, B.F., and Pessanha, A., Trade-offs between ontogenetic changes and food consumption in Brazilian silverside Atherinella brasiliensis from two tropical estuaries, J. Fish Biol., 2020, vol. 98, no. 1, pp. 196–207. https://doi.org/10.1111/jfb.14570

    Article  CAS  Google Scholar 

  108. Villarreal, H., Hinojosa, P., and Naranjo, J., Effect of temperature and salinity on the oxygen consumption of laboratory produced Penaeus vannamei postlarvae, Comp. Biochem. Physiol., Part A: Physiol., 1994, vol. 108, nos. 2–3, pp. 331–336. https://doi.org/10.1016/0300-9629(94)90103-1

    Article  Google Scholar 

  109. Winberg, G.G., The diversity and unity of vital phenomena and quantitative methods in biology, Zh. Obshch. Biol., 1981, vol. 42, no. 1, pp. 5–18.

    Google Scholar 

  110. Vooys, C.G.N. and De Geenevasen, J.A.J., Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean mussel Mytilus galloprovincialis LMK, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., vol. 132, no. 2, pp. 409–414. https://doi.org/10.1016/S1096-4959(02)00052-0

  111. Weaver, P.F., Tello, O., Krieger, J., Marmolejo, A., Weaver, K.F., et al., Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae), Biol. Open, 2016, vol. 5, no. 8, pp. 1093–1101. https://doi.org/10.1242/bio.017277

    Article  PubMed  PubMed Central  Google Scholar 

  112. Williams, W.D., Salinity as a determinant of the structure of biological communities in salt lakes, Hydrobiologia, 1998, vol. 381, nos. 1–3, pp. 191–201. https://doi.org/10.1023/A:1003287826503

    Article  Google Scholar 

  113. Williamson, C.E., Foraging behavior of a freshwater copepod: Frequency changes in looping behavior at high and low prey densities, Oecologia, 1981, vol. 50, pp. 330–336. https://doi.org/10.1007/BF00344972

    Article  Google Scholar 

  114. Yancey, P.H., Water stress, osmolytes and proteins, Am. Zool., 2001, vol. 41, no. 4, pp. 699–709. https://doi.org/10.1093/icb/41.4.699

    Article  CAS  Google Scholar 

  115. Yancey, P.H., Heppenstall, M., Ly, S., Andrell, R.M., Gates, R.D., et al., Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates, Physiol. Biochem. Zool., 2010, vol. 83, no. 1, pp. 167–173. https://doi.org/10.1086/644625

    Article  CAS  PubMed  Google Scholar 

  116. Yoder, J.A., Benoit, J.B., Denlinger, D.L., and Rivers, D.B., Stressinduced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response, J. Insect Physiol., 2006, vol. 52, no. 2, pp. 202–214. https://doi.org/10.1016/j.jinsphys.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  117. Zaika, V.E., Balansovaya teoriya rosta zhivotnykh (Balance Theory of Animal Growth), Kiev: Naukova Dumka, 1985.

  118. Zhang, P., Zhang, X., Li, J., and Huang, G., The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, vol. 147, no. 1, pp. 64–69. https://doi.org/10.1016/j.cbpa.2006.11.020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the State Assignment for the Federal Research Center of the Institute of Biology of the Southern Seas “Study of Peculiarities of the Structure and Dynamics of Ecosystems of Salt Lakes and Lagoons under the Conditions of Climate Change and Anthropogenic Load for Creating Scientific Bases for their Rational Use” (no. 121041500203-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shadrin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of animals. The article does not contain any studies involving animals in experiments performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufriieva, E.V., Shadrin, N.V. General Patterns of Salinity Influence on the Energy Balance of Aquatic Animals in Hypersaline Environment. Biol Bull Rev 13, 420–430 (2023). https://doi.org/10.1134/S207908642305002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908642305002X

Navigation