Skip to main content
Log in

Halophyte functional groups influence seasonal variations in rhizosphere microbial necromass and enzyme activities in an inland saline ecosystem

  • ORIGINAL PAPER
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

A Correction to this article was published on 16 October 2023

This article has been updated

Abstract

In this study, we investigated the seasonal changes in enzyme activities and microbial necromass carbon (C) in the bulk and rhizosphere soils of different halophytes (shrubs, grasses, and forbs) in an inland saline ecosystem in China. We found that the soil enzyme activities and microbial necromass C were 45–646% higher in rhizosphere soils than bulk soils regardless of the season and halophyte functional group. The activities of soil enzymes and bacterial necromass C were highest for forbs (4.9–172.3 nmol g−1 h−1 and 473.2 mg kg−1, respectively), and grasses had the highest fungal necromass C (FN-C) and total necromass C/soil organic C (TN-C/SOC) ratio. Moreover, the soil enzyme activities were higher in the late season stage (4.0–154.0 nmol g−1 h−1) than the early (3.6–132.1 nmol g−1 h−1) and middle (3.8–128.9 nmol g−1 h−1) season stages. FN-C and TN-C/SOC ratio were significantly higher in the middle season than the early and late seasons. Redundancy analysis showed that the enzyme activities and microbial necromass C mainly depended on the soil physicochemical properties, season, and halophyte functional group. Our results indicate that microbial turnover was consistently faster in rhizosphere soil than bulk soil in an inland saline ecosystem, and forbs could be used as pioneer species to improve microbial turnover during the phytoremediation of saline ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available from the corresponding author upon reasonable request.

Change history

References

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Appuhn A, Joergensen RG (2006) Microbial colonisation of roots as a function of plant species. Soil Biol Biochem 38:1040–1051

    Article  CAS  Google Scholar 

  • Appuhn A, Scheller E, Joergensen RG (2006) Relationships between microbial indices in roots and silt loam soils forming a gradient in soil organic matter. Soil Biol Biochem 38:2557–2564

    Article  CAS  Google Scholar 

  • Banfield CC, Dippold MA, Pausch J, Hoang DTT, Kuzyakov Y (2017) Biopore history determines the microbial community composition in subsoil hotspots. Biol Fert Soils 53:573–588

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Basirat M, Mousavi SM, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M (2019) The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil 445:565–575

    Article  CAS  Google Scholar 

  • Bharti P, Singh B, Bauddh K, Dey RK, Korstad J (2017) Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 353–369

    Chapter  Google Scholar 

  • Cao D, Shi F, Koike T, Lu Z, Sun J (2014) Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China. Clean-Soil Air Water 42:1433–1440

    Article  CAS  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. P Natl Acad Sci USA 104:4990–4995

    Article  CAS  Google Scholar 

  • Chaudhary DR, Gautam RK, Yousuf B, Mishra A, Jha B (2015) Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Appl Soil Ecol 91:16–26

    Article  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biol 20:2356–2367

    Article  Google Scholar 

  • Chen X, Hu Y, Xia Y, Zheng S, Ma C, Rui Y, He H, Huang D, Zhang Z, Ge T, Wu J, Guggenberger G, Kuzyakov Y, Su Y (2021) Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biol 27:2478–2490

    Article  CAS  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils 44:501–509

    Article  CAS  Google Scholar 

  • Crowther TW, Sokol NW, Oldfield EE, Maynard DS, Thomas SM, Bradford MA (2015) Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol Biochem 85:153–161

    Article  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270–274

    Article  PubMed  Google Scholar 

  • Ding X, Chen S, Zhang B, Liang C, He H, Horwath WR (2019) Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol Biochem 135:13–19

    Article  CAS  Google Scholar 

  • Ding X, Zhang B, Chen Q, He H, Horwath WR, Zhang X (2021) Grassland conversion to cropland decreased microbial assimilation of mineral N into their residues in a Chernozem soil. Biol Fert Soils 57:913–924

    Article  CAS  Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39:2111–2118

    Article  CAS  Google Scholar 

  • Fanin N, Moorhead D, Bertrand I (2016) Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient. Biogeochemistry 129:21–36

    Article  CAS  Google Scholar 

  • FAO, ITPS (2015) Status of the World’s Soil Resources (SWSR) – main report Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, Italy

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol 21:2082–2094

    Article  Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397

    Article  CAS  Google Scholar 

  • González G, Seastedt TR (2001) Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964

    Article  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannula S, Morrien E, van der Putten W, de Boer W (2020) Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecol 48:100988

    Article  Google Scholar 

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2:875–879

    Article  CAS  Google Scholar 

  • Hartnett DC, Wilson GWT, Ott JP, Setshogo M (2013) Variation in root system traits among African semi-arid savanna grasses: implications for drought tolerance. Austral Ecol 38:383–392

    Article  Google Scholar 

  • He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, Tedersoo L, Yuan F, Yuan F, Lipson DA, Xu X (2020) Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem 151:108024

    Article  CAS  Google Scholar 

  • He M, Fang K, Chen L, Feng X, Qin S, Kou D, He H, Liang C, Yang Y (2022) Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biol 28:936–949

    Article  CAS  Google Scholar 

  • Henneron L, Cros C, Picon-Cochard C, Rahimian V, Fontaine S (2020a) Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J Ecol 108:528–545

    Article  CAS  Google Scholar 

  • Henneron L, Kardol P, Wardle DA, Cros C, Fontaine S (2020b) Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytol 228:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environmental stress destabilizes microbial networks. ISME J 15:1722–1734

    Article  PubMed  PubMed Central  Google Scholar 

  • Hestrin R, Kan M, Lafler M, Wollard J, Kimbrel JA, Ray P, Blazewicz SJ, Stuart R, Craven K, Firestone M, Nuccio EE, Pett-Ridge J (2022) Plant-associated fungi support bacterial resilience following water limitation. ISME J 16:2752–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Du M, Chen J, Tie L, Zhou S, Buckeridge KM, Cornelissen JHC, Huang C, Kuzyakov Y (2023) Microbial necromass under global change and implications for soil organic matter. Global Change Biol 29:3503–3515

    Article  CAS  Google Scholar 

  • Huang Y, Liang C, Duan X, Chen H, Li D (2019) Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 353:340–346

    Article  CAS  Google Scholar 

  • Huo C, Luo Y, Cheng W (2017) Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem 111:78–84

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No 106. Rome, Italy

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, de Sousa L (2019) Global mapping of soil salinity change. Remote Sens Environ 231:111260

    Article  Google Scholar 

  • Jesus JM, Danko AS, Fiúza A, Borges M-T (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut R 22:6511–6525

    Article  CAS  Google Scholar 

  • Jia B, Jia L, Mou X, Chen J, Li F, Ma Q, Li X (2022) Shrubification decreases soil organic carbon mineralization and its temperature sensitivity in alpine meadow soils. Soil Biol Biochem 168:108651

    Article  CAS  Google Scholar 

  • Jia Y, Liu Z, Zhou L, Liu X, Ma K, Feng X (2023) Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species. Soil Biol Biochem 176:108884

    Article  CAS  Google Scholar 

  • Jing C, Xu Z, Zou P, Tang Q, Li Y, You X, Zhang C (2019) Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China. Appl Soil Ecol 134:1–7

    Article  Google Scholar 

  • Joergensen RG (2018) Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fert Soils 54:559–568

    Article  CAS  Google Scholar 

  • Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Lai J, Zhou Y, Zhang J, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol Evol 13:782–788

    Article  Google Scholar 

  • Langer U, Böhme L, Böhme F (2004) Classification of soil microorganisms based on growth properties: a critical view of some commonly used terms. J Plant Nutr Soil Sc 167:267–269

    Article  CAS  Google Scholar 

  • Lavallee JM, Soong JL, Cotrufo MF (2019) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biol 26:261–273

    Article  Google Scholar 

  • Li L, Wilson CB, He H, Zhang X, Zhou F, Schaeffer SM (2019) Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming. Soil Biol Biochem 135:369–378

    Article  CAS  Google Scholar 

  • Liang C, Gutknecht JLM, Balser TC (2015) Microbial lipid and amino sugar responses to long-term simulated global environmental changes in a California annual grassland. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Liang C, Jesus EdC, Duncan DS, Quensen JF, Jackson RD, Balser TC, Tiedje JM (2016) Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA. Soil Biol Biochem 94:173–180

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol 25:3578–3590

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Liu Z, Liu X, Wu X, Bian R, Liu X, Zheng J, Zhang X, Cheng K, Li L, Pan G (2021) Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil. Biol Fert Soils 57:673–684

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Brabcová V, Štursová M, Davidová A, Jansa J, Cajthaml T, Baldrian P (2018) Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J 12:1768–1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:1–9

    Article  CAS  PubMed  Google Scholar 

  • Marasco R, Fusi M, Ramond JB, Van Goethem MW, Seferji K, Maggs-Kölling G, Cowan DA, Daffonchio D (2022) The plant rhizosheath-root niche is an edaphic “mini-oasis” in hyperarid deserts with enhanced microbial competition. ISME Commun 2:47

    Article  PubMed Central  Google Scholar 

  • Maslov MN, Maslova OA (2021) Nitrogen limitation of microbial activity in alpine tundra soils along an environmental gradient: Intra-seasonal variations and effect of rising temperature. Soil Biol Biochem 156:108234

    Article  CAS  Google Scholar 

  • Mavi MS, Sanderman J, Chittleborough DJ, Cox JW, Marschner P (2012) Sorption of dissolved organic matter in salt-affected soils: effect of salinity, sodicity and texture. Sci Total Environ 435–436:337–344

    Article  PubMed  Google Scholar 

  • Moreno-Espíndola IP, Rivera-Becerril F, de Jesús F-G, De León-González F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39:2520–2526

    Article  Google Scholar 

  • Nie Y, Wang M, Zhang W, Ni Z, Hashidoko Y, Shen W (2018) Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci Total Environ 624:407–415

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorous. In: Page AL, Miller RH, Keeney DR (Eds) Methods of soil analysis, part 2, chemical and microbial properties. Agronomy Society of America, Agronomy Monograph 9, Madison, Wisconsin, 403–430

  • Park JH, Kalbitz K, Matzner E (2002) Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biol Biochem 34:813–822

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impacts of salinity and agricultural ecosystem. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, The Netherlands, pp 3–20

    Google Scholar 

  • Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, van der Putten WH (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci adv 5:eaaz1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore AP, Chaudhary DR, Jha B (2017) Seasonal patterns of microbial community structure and enzyme activities in coastal saline soils of perennial halophytes. Land Degrad Dev 28:1779–1790

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rewcastle KE, Moore JAM, Henning JA, Mayes MA, Patterson CM, Wang G, Metcalfe DB, Classen AT (2020) Investigating drivers of microbial activity and respiration in a forested bog. Pedosphere 30:135–145

    Article  CAS  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen ME, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662

    Article  Google Scholar 

  • Sae-Tun O, Bodner G, Rosinger C, Zechmeister-Boltenstern S, Mentler A, Keiblinger K (2022) Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities. Appl Soil Ecol 179:104599

    Article  Google Scholar 

  • Sardans J, Penuuelas J, Estiarte M, Prieto P (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biol 14:2304–2316

    Article  Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011) Salinity effects on carbon mineralization in soils of varying texture. Soil Biol Biochem 43:1908–1916

    Article  CAS  Google Scholar 

  • Setia R, Rengasamy P, Marschner P (2013) Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils. Sci Total Environ 465:226–232

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 468:122

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53

    Article  CAS  Google Scholar 

  • Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246

    Article  CAS  PubMed  Google Scholar 

  • Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Firestone MK, Foley MM, Hestrin R, Hungate BA, Koch BJ, Stone BW, Sullivan MB, Zablocki O, Pett-Ridge J (2022) Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol 20:415–430

    Article  CAS  PubMed  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils - methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Tian Q, Lu P, Zhai X, Zhang R, Zheng Y, Wang H, Nie B, Bai W, Niu S, Shi P, Yang Y, Li K, Yang D, Stevens C, Lambers H, Zhang W (2022) An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss. Global Change Biol 28:3651–3664

    Article  CAS  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Trivedi P, Batista BD, Bazany KE, Singh BK (2022) Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytol 234:1951–1959

    Article  PubMed  Google Scholar 

  • Usyskin-Tonne A, Hadar Y, Yermiyahu U, Minz D (2021) Elevated CO2 and nitrate levels increase wheat root-associated bacterial abundance and impact rhizosphere microbial community composition and function. ISME J 15:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Villarino SH, Pinto P, Jackson RB, Piñeiro G (2021) Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Sci Adv 7:eabd3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:4841

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu J, Zhou D, Dong H, Li Y, Lin Q, Guan B, Wang Y (2012) Vegetative ecological characteristics of restored reed (Phragmites australis) wetlands in the Yellow River Delta, China. Environ Manage 49:325–333

    Article  PubMed  Google Scholar 

  • Wang X, Sun R, Tian Y, Guo K, Sun H, Liu X, Chu H, Liu B (2020) Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment. mSystems 5:e00741-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Liang C, Yao H, Yang E, An S (2021a) The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. Catena 207:105622

    Article  CAS  Google Scholar 

  • Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021b) Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biol 27:2039–2048

    Article  CAS  Google Scholar 

  • Wang F, Che R, Deng Y, Wu Y, Tang L, Xu Z, Wang W, Liu H, Cui X (2021c) Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol Biochem 157:108238

    Article  CAS  Google Scholar 

  • Wang B, Huang Y, Li N, Yao H, Yang E, Soromotin AV, Kuzyakov Y, Cheptsov V, Yang Y, An S (2022) Initial soil formation by biocrusts: nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biol Biochem 167:108607

    Article  CAS  Google Scholar 

  • Wen Z, White PJ, Shen J, Lambers H (2022) Linking root exudation to belowground economic traits for resource acquisition. New Phytol 233:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • West JR, Cates AM, Ruark MD, Deiss L, Whitman T, Rui Y (2020) Winter rye does not increase microbial necromass contributions to soil organic carbon in continuous corn silage in North Central US. Soil Biol Biochem 148:107899

    Article  CAS  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wu L, Wang Y, Zhang S, Wei W, Kuzyakov Y, Ding X (2021) Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant Soil 463:523–535

    Article  CAS  Google Scholar 

  • Xia Y, Chen X, Hu Y, Zheng S, Ning Z, Guggenberger G, He H, Wu J, Su Y (2019) Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China. Biol Fert Soils 55:767–776

    Article  CAS  Google Scholar 

  • Xu X, Shi Z, Li D, Zhou X, Sherry RA, LuoY, (2015) Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Global Change Biol 21:3846–3853

    Article  Google Scholar 

  • Xu F, Liao H, Zhang Y, Yao M, Liu J, Sun L, Zhang X, Yang J, Wang K, Wang X, Ding Y, Liu C, Rensing C, Zhang J, Yeh K, Xu W (2022) Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. ISME J 16:801–811

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xie H, Mao Z, Bao X, He H, Zhang X, Liang C (2022) Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands. Soil Biol Biochem 167:108587

    Article  CAS  Google Scholar 

  • Yin S, Liang G, Wang C, Zhou Z (2022) Asynchronous seasonal patterns of soil microorganisms and plants across biomes: a global synthesis. Soil Biol Biochem 175:108859

    Article  CAS  Google Scholar 

  • Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28:1201–1206

    Article  CAS  Google Scholar 

  • Zhang H, Zai X, Wu X, Qin P, Zhang W (2014) An ecological technology of coastal saline soil amelioration. Ecol Eng 67:80–88

    Article  Google Scholar 

  • Zhang B, Chen S, Zhang J, He X, Liu W, Zhao Q, Zhao L, Tian C (2015) Depth-related responses of soil microbial communities to experimental warming in an alpine meadow on the Qinghai-Tibet Plateau. Eur J Soil Sci 66:496–504

    Article  CAS  Google Scholar 

  • Zhang W, Zhang X, Bai E, Cui Y, He H, Zhang X (2020) The strategy of microbial utilization of the deposited N in a temperate forest soil. Biol Fert Soils 56:359–367

    Article  CAS  Google Scholar 

  • Zhang X, Zhai P, Huang J (2022) Leaf carbon exchange of two dominant plant species impacted by water and nitrogen application in a semi-arid temperate steppe. Front Plant Sci 13:736009

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Staver AC (2019) Enhanced activity of soil nutrient-releasing enzymes after plant invasion: a meta-analysis. Ecology 100:e02830

    Article  PubMed  Google Scholar 

  • Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, Fei S, Deng S, He Z, Van Nostrand JD, Luo Y (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2:106–110

    Article  CAS  Google Scholar 

  • Zhu Y, Yu K, Wu Q, Cheng X, Li Z, Wang Z, Zhao M, Wilkes A, Bisselling T, Han G, Ren H (2023) Seasonal precipitation and soil microbial community influence plant growth response to warming and N addition in a desert steppe. Plant Soil 482:245–259

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program (2022YFF1302804), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23070202 and XDB40020000), National Natural Science Foundation of China (41977068, 41977105, and 42277349), and the Programs from Chinese Academy of Sciences (QYZDB-SSW-DQC039).

Author information

Authors and Affiliations

Authors

Contributions

Xiaorong Wei and Liping Qiu planned and designed the research; Tianhui Lu, Chunliang Chen, Zhenrui Cao, and Yueqing Yang performed experiments and conducted fieldwork; Tianhui Lu and Xiaorong Wei analyzed data and wrote the manuscript; Xiaorong Wei, Yaxian Hu, and Zekun Zhong revised the manuscript; Xiaomei Gou analyzed part of the data during revision; Benshuai Yan consulted literature and revised references during revision.

Corresponding author

Correspondence to Xiaorong Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to missing reference.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 566 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Chen, C., Qiu, L. et al. Halophyte functional groups influence seasonal variations in rhizosphere microbial necromass and enzyme activities in an inland saline ecosystem. Biol Fertil Soils 59, 989–1003 (2023). https://doi.org/10.1007/s00374-023-01768-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01768-8

Keywords

Navigation