Skip to main content
Log in

Tumor metabolic crosstalk and immunotherapy

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Tumor cells must resist the host's immune system while maintaining growth under harsh conditions of acidity and hypoxia, which indicates that tumors are more robust than normal tissue. Immunotherapeutic agents have little effect on solid tumors, mostly because of the tumor density and the difficulty of penetrating deeply into the tissue to achieve the theoretical therapeutic effect. Various therapeutic strategies targeting the tumor microenvironment (TME) have been developed. Immunometabolic disorders play a dominant role in treatment resistance at both the TME and host levels. Understanding immunometabolic factors and their treatment potential may be a way forward for tumor immunotherapy. Here, we summarize the metabolism of substances that affect tumor progression, the crosstalk between the TME and immunosuppression, and some potential tumor-site targets. We also summarize the progress and challenges of tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding author, upon reasonable request.

References

  1. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-20-1808.

    Article  PubMed  Google Scholar 

  2. Nia HT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020. https://doi.org/10.1126/science.aaz0868.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eelen G, Treps L, Li X, Carmeliet P. Basic and therapeutic aspects of angiogenesis updated. Circ Res. 2020. https://doi.org/10.1161/CIRCRESAHA.120.316851.

    Article  PubMed  Google Scholar 

  4. Giannone G, Ghisoni E, Genta S, Scotto G, Tuninetti V, Turinetto M, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21124414.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kheshtchin N, Hadjati J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J Cell Physiol. 2022. https://doi.org/10.1002/jcp.30643.

    Article  PubMed  Google Scholar 

  6. Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaw7843.

    Article  PubMed  Google Scholar 

  7. Seifert L, Werba G, Tiwari S, Giao Ly NN, Nguy S, Alothman S, et al. Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.070.

    Article  PubMed  Google Scholar 

  8. Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.03.038.

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011. https://doi.org/10.1158/2159-8274.CD-10-0028.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021. https://doi.org/10.1084/jem.20201606.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen AN, Luo Y, Yang YH, Fu JT, Geng XM, Shi JP, et al. Lactylation, a novel metabolic reprogramming code: current status and prospects. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.688910.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 2021. https://doi.org/10.1016/j.canlet.2020.12.021.

    Article  PubMed  Google Scholar 

  13. Qian J, Rankin EB. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv Exp Med Biol. 2019. https://doi.org/10.1007/978-3-030-12734-3_3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021. https://doi.org/10.1186/s12943-020-01288-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miranda-Galvis M, Teng Y. Targeting hypoxia-driven metabolic reprogramming to constrain tumor progression and metastasis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21155487.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020. https://doi.org/10.1186/s13046-020-01709-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, et al. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resistance. Cell Mol Life Sci. 2021. https://doi.org/10.1007/s00018-020-03581-0.

    Article  PubMed  Google Scholar 

  18. You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 2021. https://doi.org/10.1002/med.21771.

    Article  PubMed  Google Scholar 

  19. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001. https://doi.org/10.1126/science.1059796.

    Article  PubMed  Google Scholar 

  20. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008. https://doi.org/10.1038/cdd.2008.21.

    Article  PubMed  Google Scholar 

  21. Tafani M, Pucci B, Russo A, Schito L, Pellegrini L, Perrone GA, et al. Modulators of HIF1α and NFkB in cancer treatment: is it a rational approach for controlling malignant progression? Front Pharmacol. 2013. https://doi.org/10.3389/fphar.2013.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, et al. Hypoxia alters the expression of CC chemokines and CC chemokine receptors in a tumor-a literature review. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21165647.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weng CY, Kao CX, Chang TS, Huang YH. Immuno-metabolism: the role of cancer niche in immune checkpoint inhibitor resistance. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031258.

    Article  PubMed  PubMed Central  Google Scholar 

  24. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016. https://doi.org/10.1126/sciadv.1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231911943.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 2022. https://doi.org/10.1016/j.cytogfr.2022.11.001.

    Article  PubMed  Google Scholar 

  27. Sun H, Zhu A, Zhou X, Wang F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.16991.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol. 2017. https://doi.org/10.1016/j.semcancer.2017.01.008.

    Article  PubMed  Google Scholar 

  29. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012. https://doi.org/10.1016/j.freeradbiomed.2012.05.006.

    Article  PubMed  Google Scholar 

  30. Desbois M, Wang Y. Cancer-associated fibroblasts: key players in shaping the tumor immune microenvironment. Immunol Rev. 2021. https://doi.org/10.1111/imr.12982.

    Article  PubMed  Google Scholar 

  31. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-021-00546-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiang X, Niu YR, Wang ZH, Ye LL, Peng WB, Zhou Q. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev. 2022. https://doi.org/10.1016/j.cytogfr.2022.07.006.

    Article  PubMed  Google Scholar 

  33. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021. https://doi.org/10.1152/physrev.00048.2019.

    Article  PubMed  Google Scholar 

  34. Galassi C, Musella M, Manduca N, Maccafeo E, Sistigu A. The immune privilege of cancer stem cells: a key to understanding tumor immune escape and therapy failure. Cells. 2021. https://doi.org/10.3390/cells10092361.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017. https://doi.org/10.1038/nm.4409.

    Article  PubMed  Google Scholar 

  36. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009. https://doi.org/10.1016/j.ccr.2009.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021. https://doi.org/10.1038/s41568-021-00366w.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 2022. https://doi.org/10.1186/s13046-022-02272-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 2021. https://doi.org/10.7150/thno.53749.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021. https://doi.org/10.1186/s13045-021-01197-w.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang B, Wang Q, Wang Z, Jiang J, Yu SC, Ping YF, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 2014. https://doi.org/10.1158/0008-5472.CAN-13-2563.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ganesh K, Massagué J. TGF-β Inhibition and Immunotherapy: checkmate. Immunity. 2018. https://doi.org/10.1016/j.immuni.2018.03.037.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kokubu Y, Tabu K, Muramatsu N, Wang W, Murota Y, Nobuhisa I, et al. Induction of protumoral CD11c(high) macrophages by glioma cancer stem cells through GM-CSF. Genes Cells. 2016. https://doi.org/10.1111/gtc.12333.

    Article  PubMed  Google Scholar 

  44. Yamashina T, Baghdadi M, Yoneda A, Kinoshita I, Suzu S, Dosaka-Akita H, et al. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells. Cancer Res. 2014. https://doi.org/10.1158/0008-5472.CAN-13-2169.

    Article  PubMed  Google Scholar 

  45. Zhang Q, Cai DJ, Li B. Ovarian cancer stem-like cells elicit the polarization of M2 macrophages. Mol Med Rep. 2015. https://doi.org/10.3892/mmr.2015.3323.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011. https://doi.org/10.1073/pnas.1106645108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020. https://doi.org/10.1038/s41423-019-0344-8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Utzschneider DT, Gabriel SS, Chisanga D, Gloury R, Gubser PM, Vasanthakumar A, et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat Immunol. 2020. https://doi.org/10.1038/s41590-020-0760-z.

    Article  PubMed  Google Scholar 

  49. Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019. https://doi.org/10.1038/s41577-019-0180-1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaiser M, Semeraro MD, Herrmann M, Absenger G, Gerger A, Renner W. Immune aging and immunotherapy in cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22137016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, Shih HY, et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat Immunol. 2019. https://doi.org/10.1038/s41590-019-0403-4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019. https://doi.org/10.1038/s41586-019-1325-x.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022. https://doi.org/10.1016/j.ccell.2022.01.001.

    Article  PubMed  Google Scholar 

  54. Lopez Krol A, Nehring HP, Krause FF, Wempe A, Raifer H, Nist A, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 2022. https://doi.org/10.15252/embr.202254685.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Franco F, Ho PC. Metabolic regulation of tregs in cancer: opportunities for immunotherapy. Trends Cancer. 2017. https://doi.org/10.1016/j.trecan.2017.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020. https://doi.org/10.1186/s12943-020-01234-1.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang C, Liu Y. Targeting NK cell checkpoint receptors or molecules for cancer immunotherapy. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01295.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bodac A, Meylan E. Neutrophil metabolism in the cancer context. Semin Immunol. 2021. https://doi.org/10.1016/j.smim.2021.101583.

    Article  PubMed  Google Scholar 

  59. Rakaee M, Busund LT, Paulsen EE, Richardsen E, Al-Saad S, Andersen S, et al. Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.12360.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rao HL, Chen JW, Li M, Xiao YB, Fu J, Zeng YX, et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0030806.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol. 2009. https://doi.org/10.1200/JCO.2008.18.9498.

    Article  PubMed  Google Scholar 

  62. Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coëlle C, Mouroux J, et al. Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer. 2012. https://doi.org/10.1002/cncr.26456.

    Article  PubMed  Google Scholar 

  63. Li S, Cong X, Gao H, Lan X, Li Z, Wang W, et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 2019. https://doi.org/10.1186/s13046-018-1003-0.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001946.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y. The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20030529.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li J, Kumari T, Barazia A, Jha V, Jeong SY, Olson A, et al. Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. J Exp Med. 2022. https://doi.org/10.1084/jem.20211083.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.040.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, et al. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer. 2014. https://doi.org/10.1002/ijc.28622.

    Article  PubMed  Google Scholar 

  69. Leliefeld PH, Koenderman L, Pillay J. How neutrophils shape adaptive immune responses. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00471.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-021-00539-4.

    Article  PubMed  Google Scholar 

  71. Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01749.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.785222.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 2021. https://doi.org/10.1016/j.ccell.2020.12.012.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-002305.

    Article  PubMed  PubMed Central  Google Scholar 

  75. De Meo ML, Spicer JD. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021. https://doi.org/10.1016/j.smim.2022.101595.

    Article  PubMed  Google Scholar 

  76. Stehr AM, Wang G, Demmler R, Stemmler MP, Krug J, Tripal P, et al. Neutrophil extracellular traps drive epithelial-mesenchymal transition of human colon cancer. J Pathol. 2022. https://doi.org/10.1002/path.5860.

    Article  PubMed  Google Scholar 

  77. Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019. https://doi.org/10.1161/ATVBAHA.119.312463.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu L, Saxena S, Singh RK. Neutrophils in the tumor microenvironment. Adv Exp Med Biol. 2020. https://doi.org/10.1007/978-3-030-35723-8_1.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sadiku P, Willson JA, Ryan EM, Sammut D, Coelho P, Watts ER, et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab. 2021. https://doi.org/10.1016/j.cmet.2020.11.016.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang H, Li J, Wang Y, Gong X, Xu X, Wang J, et al. Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. J Control Release. 2020. https://doi.org/10.1016/j.jconrel.2019.12.028.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sen GA. Bio-inspired nanomedicine strategies for artificial blood components. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017. https://doi.org/10.1002/wnan.1464.

    Article  Google Scholar 

  82. Liang X, Chen M, Bhattarai P, Hameed S, Dai Z. Perfluorocarbon@Porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c05617.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krafft MP. Alleviating tumor hypoxia with perfluorocarbon-based oxygen carriers. Alleviating Tumor Hypoxia Perfluorocarbon-Based Oxygen Carriers. 2020. https://doi.org/10.1016/j.coph.2020.08.010.

    Article  Google Scholar 

  84. Jiao B, Liu S, Zhao H, Zhuang Y, Ma S, Lin C, et al. Hypoxia-responsive circRNAs: a novel but important participant in non-coding RNAs ushered toward tumor hypoxia. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-05114-y.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine. 2021. https://doi.org/10.1016/j.ebiom.2021.103627.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Feng Q, Liu Z, Yu X, Huang T, Chen J, Wang J, et al. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-32521-8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Elia I, Rowe JH, Johnson S, Joshi S, Notarangelo G, Kurmi K, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab. 2022. https://doi.org/10.1016/j.cmet.2022.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen S, Zhou X, Yang X, Li W, Li S, Hu Z, et al. Dual blockade of lactate/GPR81 and PD-1/PD-L1 pathways enhances the anti-tumor effects of metformin. Biomolecules. 2021. https://doi.org/10.3390/biom11091373.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhu Y, Yang Z, Dong Z, Gong Y, Hao Y, Tian L, et al. CaCO3-assisted preparation of pH-responsive immune-modulating nanoparticles for augmented chemo-immunotherapy. Nanomicro Lett. 2020. https://doi.org/10.1007/s40820-020-00549-4.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020. https://doi.org/10.1016/j.ccell.2020.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chen F, Wang Y, Gao J, et al. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021. https://doi.org/10.1016/j.biomaterials.2021.120709.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014. https://doi.org/10.1016/j.cmet.2014.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 2015. https://doi.org/10.1172/JCI76012.

    Article  PubMed  Google Scholar 

  94. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017. https://doi.org/10.1016/j.cmet.2016.12.018.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 2014. https://doi.org/10.1158/1078-0432.CCR-13-2270.

    Article  PubMed  Google Scholar 

  96. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022. https://doi.org/10.1038/s41571-021-00588-9.

    Article  PubMed  Google Scholar 

  97. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022. https://doi.org/10.1186/s12943-022-01569-x.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guo H, Zhang W, Wang L, Shao Z, Huang X. Biomimetic cell membrane-coated glucose/oxygen-exhausting nanoreactor for remodeling tumor microenvironment in targeted hypoxic tumor therapy. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121821.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhou S, Meng F, Du S, Qian H, Ding N, Sha H, et al. Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001925.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release. 2022. https://doi.org/10.1016/j.jconrel.2022.09.038.

    Article  PubMed  Google Scholar 

  101. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022. https://doi.org/10.1186/s13045-022-01247-x.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017. https://doi.org/10.1038/nnano.2017.52.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020. https://doi.org/10.1038/s41586-020-2537-9.

    Article  PubMed  Google Scholar 

  104. Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat Mater. 2021. https://doi.org/10.1038/s41563-020-0793-6.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen J, Ye Z, Huang C, Qiu M, Song D, Li Y, et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc Natl Acad Sci U S A. 2022. https://doi.org/10.1073/pnas.2207841119.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhao X, Zhao R, Nie G. Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nat Protoc. 2022. https://doi.org/10.1038/s41596-022-00713-7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small. 2021. https://doi.org/10.1002/smll.202006484.

    Article  PubMed  Google Scholar 

  108. Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res. 2021. https://doi.org/10.1007/s13346-021-00923-8.

    Article  PubMed  Google Scholar 

  109. Infantino V, Iacobazzi V, Palmieri F, Menga A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun. 2013. https://doi.org/10.1016/j.bbrc.2013.09.037.

    Article  PubMed  Google Scholar 

  110. Assmann N, O’Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017. https://doi.org/10.1038/ni.3838.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 82060562), the Scientific and Technological Innovation Major Base of Guangxi (No. 2022-36-Z05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

This manuscript does not contain any human or animals related research, and does not involve any ethical experiments.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Nie, Y., Liu, X. et al. Tumor metabolic crosstalk and immunotherapy. Clin Transl Oncol 26, 797–807 (2024). https://doi.org/10.1007/s12094-023-03304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03304-4

Keywords

Navigation