Skip to main content
Log in

Rheological properties of yam mucilage

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Yam is a vegetable that is widely grown around the world. Yam mucilage contains a high mucin concentration that can be useful for supporting the swallowing process. Although the shear and extensional rheology of yam mucilage is essential to its flow, they have not received much attention. Using a commercial rheometer and a filament stretching rheometer, the rheological properties of the mucilage in yam were examined. Yam mucilage exhibits shear-thinning behavior and viscoelastic behavior. In addition, yam mucilage also exhibits stretching phenomena and shows high extensional viscosity. However, the elasticity of yam mucilage decreased when the shear increased. The extensional rheological behavior of the yam mucilage can be predicted by two models, including the Giesekus model and global function. However, the agreement between the model and the experimental data decreases gradually when the Hencky strain increases, even though the model can predict the shear viscosity data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The author added the values of extensional and shear viscosities in the conclusion section.

References

  1. Reddy PP (2015) Plant protection in tropical root and tuber crops. Springer (India). https://doi.org/10.1007/978-81-322-2389-4

    Book  Google Scholar 

  2. Sautour M, Mitaine-Offer AC, Lacaille-Dubois MA (2007) The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med 61:91–101. https://doi.org/10.1007/s11418-006-0126-3

    Article  CAS  Google Scholar 

  3. Mignouna HD, Abang MM, Asiedu R (2008) Genomics of yams, a common source of food and medicine in the tropics. Genom Trop Crop Plants. https://doi.org/10.1007/978-0-387-71219-2_23

    Article  Google Scholar 

  4. Levine MJ (1993) Development of artificial salivas. Crit Rev Oral Biol Med 4:279–286. https://doi.org/10.1177/10454411930040030401

    Article  CAS  Google Scholar 

  5. Park MS, Chung JW, Kim YK, Chung SC, Kho HS (2007) Viscosity and wettability of animal mucin solutions and human saliva. Oral Dis 13:181–186. https://doi.org/10.1111/j.1601-0825.2006.01263.x

    Article  Google Scholar 

  6. Misaki A, Ito T, Harada T (1972) Constitutional studies on the mucilage of “Yamanoimo”, Dioscorea batatas Decne, forma Tsukune. Agric Biol Chem 36:761–771. https://doi.org/10.1080/00021369.1972.10860328

    Article  CAS  Google Scholar 

  7. Harvey PJ, Boulter D (1983) Isolation and characterization of the storage protein of yam tubers (Dioscorea rotundata). Phytochemistry 22:1687–1693. https://doi.org/10.1016/S0031-9422(00)80252-6

    Article  CAS  Google Scholar 

  8. Yuan B, Ritzoulis C, Chen J (2018) Extensional and shear rheology of a food hydrocolloid. Food Hydrocoll 74:296–306. https://doi.org/10.1016/j.foodhyd.2017.08.019

    Article  CAS  Google Scholar 

  9. Campestrini LH, Silveira JLM, Duarte MER, Koop HS, Noseda MD (2013) NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydr Polym 94:511–519. https://doi.org/10.1016/j.carbpol.2013.01.020

    Article  CAS  Google Scholar 

  10. Bourbon AI, Pinheiro AC, Ribeiro C, Miranda C, Maia JM, Teixeira JA et al (2010) Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: comparison with guar gum and locust bean gum. Food Hydrocoll 24:184–192. https://doi.org/10.1016/j.foodhyd.2009.09.004

    Article  CAS  Google Scholar 

  11. Yao M, Spiegelberg SH, McKinley GH (2000) Dynamics of weakly strain-hardening fluids in filament stretching devices. J Nonnewton Fluid Mech 89:1–43. https://doi.org/10.1016/S0377-0257(99)00028-2

    Article  CAS  Google Scholar 

  12. Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Nonnewton Fluid Mech 72:31–53. https://doi.org/10.1016/S0377-0257(97)00022-0

    Article  CAS  Google Scholar 

  13. Wagner C, Bourouiba L, McKinley GH (2015) An analytic solution for capillary thinning and breakup of FENE-P fluids. J Nonnewton Fluid Mech 218:53–61. https://doi.org/10.1016/j.jnnfm.2015.01.011

    Article  CAS  Google Scholar 

  14. Torres MD, Hallmark B, Wilson DI, Hilliou L (2014) Natural Giesekus fluids: Shear and extensional behavior of food gum solutions in the semidilute regime. AIChE J 60:3902–3915. https://doi.org/10.1002/aic.14611

    Article  CAS  Google Scholar 

  15. Helrich K (1990) Official methods of analysis, vol 1. Association of Official Analytical Chemists, Washington, DC. https://doi.org/10.7312/seir17116-004

    Book  Google Scholar 

  16. Winter HH (2009) Three views of viscoelasticity for Cox–Merz materials. Rheol Acta 48:241–243. https://doi.org/10.1007/s00397-008-0329-5

    Article  CAS  Google Scholar 

  17. Darsono N, Mizunuma H, Obara H (2012) Extensional flow of carbon nanotube dispersion and its influence on electrical conductivity. J Soc Rheol Jpn 40:101–109. https://doi.org/10.1678/rheology.40.101

    Article  CAS  Google Scholar 

  18. Petrie CJS (2006) Extensional viscosity: a critical discussion. J Nonnewton Fluid Mech 137:15–23. https://doi.org/10.1016/j.jnnfm.2006.01.011

    Article  CAS  Google Scholar 

  19. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the conacept of deformation-dependent tensorial mobility. J Nonnewton Fluid Mech 11:69–109. https://doi.org/10.1016/0377-0257(82)85016-7

    Article  CAS  Google Scholar 

  20. Barrow MS, Brown SWJ, Williams PR, Williams RL (2004) Rheology of dilute polymer solutions and engine lubricants in high deformation rate extensional flows produced by bubble collapse. J Fluids Eng Asme 126:162–169. https://doi.org/10.1115/1.1667889

    Article  CAS  Google Scholar 

  21. Bird RB, Hassager O (1987) Dynamics of polymeric liquids. Fluid Mech 1:672

    Google Scholar 

  22. Meister JJ, Anderle K, Merriman G (1983) Rheology of aqueous solutions of okra mucilage F. J Rheol (N Y N Y) 27:37–46. https://doi.org/10.1122/1.549721

    Article  CAS  Google Scholar 

  23. Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M (2008) Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 22:807–818. https://doi.org/10.1016/j.foodhyd.2007.03.007

    Article  CAS  Google Scholar 

  24. Cutler AN, Morris ER, Taylor L (1983) Oral perception of viscosity in fluid food and model systems. J Texture Stud 14:377–395. https://doi.org/10.1111/j.1745-4603.1983.tb00357.x

    Article  Google Scholar 

  25. Watermann H, Blom C, Holterman HJ, ’s-Gravemmade EJ, Mellema J (1988) Rheology of Human Saliva. Arch Oral Biol 33:589–596. https://doi.org/10.1016/0003-9969(88)90134-3

    Article  Google Scholar 

  26. Park MS, Chang JY, Kim YY, Kang JH, Kho HS (2010) Physical and biological properties of yam as a saliva substitute. Arch Oral Biol 55:177–183. https://doi.org/10.1016/j.archoralbio.2009.12.004

    Article  CAS  Google Scholar 

  27. Lee SK, Lee SW, Chung SC, Kim YK, Kho HS (2002) Analysis of residual saliva and minor salivary gland secretions in patients with dry mouth. Arch Oral Biol 47:637–641. https://doi.org/10.1016/S0003-9969(02)00053-5

    Article  CAS  Google Scholar 

  28. Barnes AH (2000) A handbook of elementary rheology, vol 331. Institute of Non-Newtonian Fluid Mechanics, University of Wales. https://doi.org/10.1126/science.1201543

    Book  Google Scholar 

  29. Chen J, Lolivret L (2011) The determining role of bolus rheology in triggering a swallowing. Food Hydrocoll 25:325–332. https://doi.org/10.1016/j.foodhyd.2010.06.010

    Article  CAS  Google Scholar 

  30. Lv Z, Chen J, Holmes M (2017) Human capability in the perception of extensional and shear viscosity. J Texture Stud 48:463–469. https://doi.org/10.1111/jtxs.12255

    Article  Google Scholar 

  31. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15:12–27. https://doi.org/10.1515/arh-2005-0001

    Article  CAS  Google Scholar 

  32. Dinic J, Jimenez LN, Sharma V (2017) Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Lab Chip 17:460–473. https://doi.org/10.1039/C6LC01155A

    Article  CAS  Google Scholar 

  33. Sharma V, Haward JS, Serdy J, Keshavarz B, Soderlund A, Threlfall-Holmes P et al (2015) The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11:3251–3270. https://doi.org/10.1039/c4sm01661k

    Article  CAS  Google Scholar 

  34. Miller E, Clasen C, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48:625–639. https://doi.org/10.1007/s00397-009-0357-9

    Article  CAS  Google Scholar 

  35. McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. Polymer (Guildf). https://doi.org/10.1007/s00247-009-1482-4

    Article  Google Scholar 

  36. Schleiniger G, Weinacht RJ (1991) A remark on the Giesekus viscoelastic fluid. J Rheol (N Y N Y) 35:1157–1170. https://doi.org/10.1122/1.550169

    Article  CAS  Google Scholar 

  37. Yoo JY, Choi HC (1989) On the steady simple shear flows of the one-mode Giesekus fluid. Rheol Acta 28:13–24. https://doi.org/10.1007/BF01354764

    Article  CAS  Google Scholar 

  38. Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol (N Y N Y) 45:115–138. https://doi.org/10.1122/1.1332389

    Article  CAS  Google Scholar 

  39. Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc R Soc Lond Ser A Contain Pap a Math Phys Character 77:426–440. https://doi.org/10.1098/rspa.1906.0038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ngoc Minh.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minh, N.N. Rheological properties of yam mucilage. Korea-Aust. Rheol. J. 35, 323–333 (2023). https://doi.org/10.1007/s13367-023-00071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00071-0

Keywords

Navigation