Skip to main content
Log in

Algorithm for Data Processing from Ozone Lidar Sensing in the Atmosphere

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We developed an algorithm of software product for processing the data from lidar sensing at the wavelengths of 299/341 nm for a vertical path of atmospheric sensing with the spatial resolution from 1.5 to 150 m. The main options of the software include: recording the atmospheric lidar sensing data, conversion of DAT to TXT file format, and retrieval of ozone concentration profiles. The software complex, developed on the basis of our algorithm to process the lidar sensing data, makes it possible to obtain the ozone concentration profiles from 4 to 20 km. The blocks of recording the data from atmospheric lidar sensing and retrieving the ozone concentration profiles allow for a visual control of the recorded lidar returns and retrieved ozone concentration profiles. We present an example of retrieving the ozone concentration profile from lidar data, which was obtained in 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Agishev, R., Laser Remote Sensing of the Environment: Methods and Means, PhysMathLit Publ. House, 2019.

  2. Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P.K., Clerbaux, C., Degenstein, D., Mazière, M.De, Dinelli, B.M., Dudhia, A., Dufour, G., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Granville, J., Harris, N.R.P., Hoppel, K., Hubert, D., Kasai, Y., Kurylo, M.J., Kyrölä, E., Lambert, J.-C., Levelt, P.F., McElroy, C.T., McPeters, R.D., Munro, R., Nakajima, H., Parrish, A., Raspollini, P., Remsberg, E.E., Rosenlof, K.H., Rozanov, A., Sano, T., Sasano, Y., Shiotani, M., Smit, H.G. J., Stiller, G., Tamminen, J., Tarasick, D.W., Urban, J., van der A R.J., Veefkind, J.P., Vigouroux, C., von Clarmann, T., von Savigny, C., Walker, K.A., Weber, M., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone, Part 1: Measurement techniques, uncertainties and availability, Atmos. Meas. Tech., 2014, vol. 7, no 5, pp. 1395–1427. https://doi.org/10.5194/amt-7-1395-2014

    Article  Google Scholar 

  3. McDermid, I.S., Godin, S.M., and Lindquist, L.O., Ground-based laser DIAL system for long-term measurements of stratospheric ozone, Appl. Opt., 1990, vol. 29, no. 25, pp. 3603–3612. https://doi.org/10.1364/AO.29.003603

    Article  Google Scholar 

  4. McDermid, I.S., Beyerle, G., Haner, D.A., and Leblanc, T., Redesign and improved per-formance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Moun-tain Facility, Appl. Opt., 2002, vol. 41, no. 36, pp. 7550–7555. https://doi.org/10.1364/ao.41.007550

    Article  Google Scholar 

  5. Godin-Beekmanna, S., Songa, T., and Heeseb, B., Long-term DIAL monitoring of the stratospheric ozone vertical distribution, Proc. SPIE, 2003, vol. 4893, pp. 251–263. https://doi.org/10.1117/12.466698

    Article  Google Scholar 

  6. Gaudel, A., Ancellet, G., and Godin-Beekmann, S., Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44 N, 6.7 E, Atmos. Environ., 2015, vol. 113, pp. 78–89. https://doi.org/10.1016/j.atmosenv.2015.04.028

    Article  Google Scholar 

  7. Sullivan, J.T., McGee, T.J., Sumnicht, G.K., Twigg, L.W., and Hoff, R.M., A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region, Atmos. Meas. Tech., 2014, vol. 7, no. 10, pp. 3529–3548. https://doi.org/10.5194/amt-7-3529-2014

    Article  Google Scholar 

  8. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Gridnev, Yu.V., and Kharchenko, O.V., Measurements of ozone vertical profiles in the upper troposphere–stratosphere over Western Siberia by DIAL, MLS, and IASI, Atmosphere, 2020, vol. 11, no. 2, pp. 196. https://doi.org/10.3390/atmos11020196

    Article  Google Scholar 

  9. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Romanovskii, O.A., and Kharchenko, O.V., Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere–lower stratosphere, Remote Sens., 2017, vol. 9, no. 5, pp. 447. https://doi.org/10.3390/rs9050447

    Article  Google Scholar 

  10. Fang, X., Li, T., Ban, C., Wu, Z., Li, J., Li, F., Cen, Y., and Tian, B., A mobile differential absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet, Opt. Express., 2019, vol. 27, pp. 4126–4139. https://doi.org/10.1364/OE.27.004126

    Article  Google Scholar 

  11. Nair, P.J., Godin-Beekmann, S., Froidevaux, L., Flynn, L.E., Zawodny, J.M., Russell, J.M., Pazmiño, A., Ancellet, G., Steinbrecht, W., Claude, H., Leblanc, T., McDermid, S., van Gijsel, J.A.E., Johnson, B., Thomas, A., Hubert, D., Lambert, J.-C., Nakane, H., and Swart, D.P.J., Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations, Atmos. Meas. Tech., 2012, vol. 5, no. 6, pp. 1301–1318. https://doi.org/10.5194/amt-5-1301-2012

    Article  Google Scholar 

  12. Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V., Romanovskii, O.A., and Kharchenko, O.V., Lidar differential absorption system for measuring ozone in the upper troposphere–stratosphere, J. Appl. Spectrosc., 2019, vol. 85, no. 6, pp. 1114–1120. https://doi.org/10.1007/s10812-019-00767-8

    Article  Google Scholar 

  13. Measures, R.M., Laser Remote Sensing: Fundamentals and Applications. Krieger Publishing Company, 1992.

    Google Scholar 

  14. Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J.P., High spectral resolution ozone absorption cross-sections, Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 2014, vol. 7, pp. 609–624. https://doi.org/10.5194/amt-7-609-2014

    Article  Google Scholar 

  15. Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J.P., High spectral resolution ozone absorption cross-sections, Part 2: Temperature dependence, Atmos. Meas. Tech., 2014, vol. 7, pp. 625–636. https://doi.org/10.5194/amt-7-625-2014

    Article  Google Scholar 

  16. Temperature dependent absorption cross sections measured with the SCIAMACHY satellite spectrometer. https://www.iup.uni-bremen.de/gruppen/molspec/databases/sciamachydata/index.html. Accessed December 9, 2021.

  17. Temperature-dependent absorption cross-sections of O3 in the 231-794 nm range recorded with GOME FM. https://www.iup.uni-bremen.de/gruppen/molspec/databases/gomefmdata/index.html. Accessed December 9, 2021.

  18. Malicet, J., Daumont, D., Charbonnier, J., Parisse, A., Chakir, A., and Brion, J., Ozone UV spectroscopy 2, Absorption cross-sections and temperature-dependence, J. Atmos. Chem., 1995, vol. 21, pp. 263–273. https://doi.org/10.1007/BF00696758

    Article  Google Scholar 

  19. Bondarenko, S.L., El’nikov, A.V., and Zuev, V.V., Influence of optical characteristics of aerosols on the results of the ozone lidar sounding due to correction of the initial data for aerosol, Atmos. Ocean. Opt., 1993, vol. 6, no. 10, pp. 721–732.

    Google Scholar 

  20. Zuev, V.V., Zuev, V.E., Makushkin, Yu.S., Marichev, V.N., and Mitsel, A.A., Laser sounding of atmospheric humidity: experiment, Appl. Opt., 1983, vol. 22, no. 23. pp. 3742–3746. https://doi.org/10.1364/ao.22.003742

    Article  Google Scholar 

  21. El'nikov, A.V., Marichev, V.N., Shelevoi, K.D., and Shelefontyuk, D.I., Laser Radar for Sensing Vertical Stratification of Atmospheric Aerosol, Atmos. Ocean. Opt., 1988, vol. 1. no. 04. pp. 117–123.

    Google Scholar 

  22. Krueger, A.J. and Minzner, R.A., Mid-latitude ozone model for the 1976 U.S. Standard atmosphere, J. Geophys. Res., 1976, vol. 81, no. 24. pp. 4477–4481. https://doi.org/10.1029/JC081i024p04477

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-10051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nevzorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevzorov, A.A., Nevzorov, A.V., Nadeev, A.I. et al. Algorithm for Data Processing from Ozone Lidar Sensing in the Atmosphere. Opt. Mem. Neural Networks 32, 169–181 (2023). https://doi.org/10.3103/S1060992X23030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23030050

Keywords:

Navigation