Skip to main content
Log in

Mechanisms of Intron-Mediated Enhancement of Expression: Welcome to the Hotel California

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The phenomenon of the positive influence of introns on the expression of a corresponding gene, which is called intron-mediated enhancement (IME), is characteristic of a wide variety of organisms, including nematodes, insects, mammals, fungi, and plants, and occurs due to an as-yet-undefined fundamental mechanism. IME introns have been used for a long time, in particular, in plant biotechnology. Understanding the mechanisms of this phenomenon allows predicting and easily generating stimulatory introns with the given properties and creating highly advantageous phenotypes. It will also give the greenlight to the use of IME in gene therapy and to improve the production of pharmaceutical proteins. In this review, we analysed previously proposed models of IME functioning mechanisms and identified factors that can directly or indirectly determine IME under different conditions and at different levels of gene expression, such as experimental methods of IME research, regulatory RNAs, sequence properties, intron position and orientation, factors at the levels of DNA, transcription, splicing, mRNA, translation, genes in which IME is detected, tissue specificity, repression and how some factors relate to each other by importance. Since there is no single mechanism of IME, and the effect may differ in different species, when modelling this process, only the cases of IME affecting the same level of expression should be compared with each other, taking into account the experimental conditions. Identifying the biological factors that may determine IME and the relationship between them will help in the future to create a corresponding data set suitable for machine learning and try to solve the mystery of the IME phenomenon using machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Agarwal, N.Yu. and Ansari, A., Enhancement of transcription by a splicing-competent intron is dependent on promoter directionality, PLoS Genet., 2016, vol. 12, no. 5, p. e1006047. https://doi.org/10.1371/journal.pgen.1006047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akua, T. and Shaul, O., The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron, J. Exp. Bot., 2013, vol. 64, no. 14, pp. 4255–4270. https://doi.org/10.1093/jxb/ert235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akua, T., Berezin, I., and Shaul, O., The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence, BMC Plant Biol., 2010, vol. 10, p. 93. https://doi.org/10.1186/1471-2229-10-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Husini, N., Medler, S., and Ansari, A., Crosstalk of promoter and terminator during RNA polymerase II transcription cycle, Biochim. Biophys. Acta, Gene Regul. Mech., 2020, vol. 1863, no. 12, p. 194657. https://doi.org/10.1016/j.bbagrm.2020.194657

    Article  CAS  PubMed  Google Scholar 

  5. Alipanahi, B., Delong, A., Weirauch, M.T., et al., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 2015, vol. 33, no. 8, pp. 831–838. https://doi.org/10.1038/nbt.3300

    Article  CAS  PubMed  Google Scholar 

  6. Auslander, N., Gussow, A.B., and Koonin, E.V., Incorporating machine learning into established bioinformatics frameworks, Int. J. Mol. Sci., 2021, vol. 22, no. 6, p. 2903. https://doi.org/10.3390/ijms22062903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baier, T., Jacobebbinghaus, N., Einhaus, A., et al., Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii, PLoS Genet., 2020, vol. 16, no. 7, p. e1008944. https://doi.org/10.1371/journal.pgen.1008944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barshai, M., Tripto, E., and Orenstein, Y., Identifying regulatory elements via deep learning, Annu. Rev. Biomed. Data Sci., 2020, vol. 3, pp. 315–338. https://doi.org/10.1146/annurev-biodatasci-022020-021940

    Article  Google Scholar 

  9. Basso, M.F., Arraes, F.B.M., Grossi-de-Sa, M., et al., Insights into genetic and molecular elements for transgenic crop development, Front. Plant Sci., 2020, vol. 11, p. 509. https://doi.org/10.3389/fpls.2020.00509

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bhatti, G.K., Khullar, N., Sidhu, I.S., et al., Emerging role of non-coding RNA in health and disease, Metab. Brain Dis., 2021, vol. 36, no. 6, pp. 1119–1134. https://doi.org/10.1007/s11011-021-00739-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bieberstein, N.I., Carrillo Oesterreich, F., Straube, K., et al., First exon length controls active chromatin signatures and transcription, Cell Rep., 2012, vol. 2, no. 1, pp. 62–68. https://doi.org/10.1016/j.celrep.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  12. Boehm, V. and Gehring, N.H., Exon junction complexes: supervising the gene expression assembly line, Trends Genet., 2016, vol. 32, no. 11, pp. 724–735. https://doi.org/10.1016/j.tig.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Bogard, B., Francastel, C., and Hubé, F., Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel?, RNA Biol., 2020, vol. 17, no. 12, pp. 1707–1720. https://doi.org/10.1080/15476286.2020.1783868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bourdon, V., Harvey, A., and Lonsdale, D.M., Introns and their positions affect the translational activity of mRNA in plant cells, EMBO Rep., 2001, vol. 2, no. 5, pp. 394–398. https://doi.org/10.1093/embo-reports/kve090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradnam, K.R. and Korf, I., Longer first introns are a general property of eukaryotic gene structure, PLoS One, 2008, vol. 3, no. 8, p. e3093. https://doi.org/10.1371/journal.pone.0003093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Callis, J., Fromm, M., and Walbot, V., Introns increase gene expression in cultured maize cells, Genes Dev., 1987, vol. 1, no. 10, pp. 1183–1200. https://doi.org/10.1101/gad.1.10.1183

    Article  CAS  PubMed  Google Scholar 

  17. Casas-Mollano, J.A., Lao, N.T., and Kavanagh, T.A., Intron-regulated expression of SUVH3, an Arabidopsis Su(var)3-9 homologue, J. Exp. Bot., 2006, vol. 57, no. 12, pp. 3301–3311. https://doi.org/10.1093/jxb/erl093

    Article  CAS  PubMed  Google Scholar 

  18. Chaubet-Gigot, N., Kapros, T., Flenet, M., et al., Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis, Plant Mol Biol., 2001, vol. 45, no. 1, pp. 17–30. https://doi.org/10.1023/a:1006487023926

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhary, S., Khokhar, W., Jabre, I., et al., Alternative splicing and protein diversity: plants versus animals, Front. Plant Sci., 2019, vol. 10, p. 708. https://doi.org/10.3389/fpls.2019.00708

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chicco, D., Ten quick tips for machine learning in computational biology, BioData Min., 2017, vol. 10, p. 35. https://doi.org/10.1186/s13040-017-0155-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chorev, M. and Carmel, L., The function of introns, Front. Genet., 2012, vol. 3, p. 55. https://doi.org/10.3389/fgene.2012.00055

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung, B.Y., Simons, C., Firth, A.E., et al., Effect of 5′UTR introns on gene expression in Arabidopsis thaliana, BMC Genomics, 2006, vol. 7, p. 120. https://doi.org/10.1186/1471-2164-7-120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clancy, M. and Hannah, L.C., Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing, Plant Physiol., 2002, vol. 130, no. 2, pp. 918–929. https://doi.org/10.1104/pp.008235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clancy, M., Vasil, V., Hannah, C.L., et al., Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts, Plant Sci., 2002, vol. 98, pp. 151–161. https://doi.org/10.1016/0168-9452(94)90005-1

    Article  Google Scholar 

  25. Curi, G.C., Chan, R.L., and Gonzalez, D.H., The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency, J. Exp. Bot., 2005, vol. 56, pp. 419, pp. 2563–2571. https://doi.org/10.1093/jxb/eri250

  26. Custódio, N. and Carmo-Fonseca, M., Co-transcriptional splicing and the CTD code, Crit. Rev. Biochem. Mol. B-iol., 2016, vol. 51, no. 5, pp. 395–411. https://doi.org/10.1080/10409238.2016.1230086

    Article  CAS  Google Scholar 

  27. Damgaard, C.K., Kahns, S., Lykke-Andersen, S., et al., A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo, Mol. Cell., 2008, vol. 29, no. 2, pp. 271–278. https://doi.org/10.1016/j.molcel.2007.11.035

    Article  CAS  PubMed  Google Scholar 

  28. David-Assael, O., Berezin, I., Shoshani-Knaani, N., et al., AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential, Funct. Plant Biol., 2006, vol. 33, no. 7, pp. 661–672. https://doi.org/10.1071/FP05295

    Article  CAS  PubMed  Google Scholar 

  29. Dean, C., Favreau, M., Bond-Nutter, D., et al., Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes, Plant Cell, 1989, vol. 1, no. 2, pp. 201–208. https://doi.org/10.1105/tpc.1.2.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Depicker, A. and Montagu, M.V., Post-transcriptional gene silencing in plants, Curr. Opin. Cell Biol., 1997, vol. 9, no. 3, pp. 373–382. https://doi.org/10.1016/s0955-0674(97)80010-5

    Article  PubMed  Google Scholar 

  31. Donath, M., Mendel, R., Cerff, R., et al., Intron-dependent transient expression of the maize GapA1 gene, Plant Mol. Biol., 1995, vol. 28, no. 4, pp. 667–676. https://doi.org/10.1007/BF00021192

    Article  CAS  PubMed  Google Scholar 

  32. Dwyer, K., Agarwal, N., Gega, A., et al., Proximity to the promoter and terminator regions regulates the transcription enhancement potential of an intron, Front. Mol. Biosci., 2021a, vol. 8, p. 712639. https://doi.org/10.3389/fmolb.2021.712639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dwyer, K., Agarwal, N., Pile, L., et al., Gene architecture facilitates intron-mediated enhancement of transcription, Front. Mol. Biosci., 2021b, vol. 8, p. 669004. https://doi.org/10.3389/fmolb.2021.669004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eamens, A., Wang, M.B., Smith, N.A., et al., RNA silencing in plants: yesterday, today, and tomorrow, Plant Physiol., 2008, vol. 147, no. 2, pp. 456–468. https://doi.org/10.1104/pp.108.117275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Emami, S., Arumainayagam, D., Korf, I., et al., The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana, Plant Biotechnol. J., 2013, vol. 11, no. 5, pp. 555–563. https://doi.org/10.1111/pbi.12043

    Article  CAS  PubMed  Google Scholar 

  36. Eraslan, G., Avsec, Ž., Gagneur, J., et al., Deep learning: new computational modelling techniques for genomics, Nat. Rev. Genet., 2019, vol. 20, no. 7, pp. 389–403. https://doi.org/10.1038/s41576-019-0122-6

    Article  CAS  PubMed  Google Scholar 

  37. Fagard, M. and Vaucheret, H., (Trans)gene silencing in plants: how many mechanisms?, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 167–194. https://doi.org/10.1104/pp.108.117275

    Article  CAS  PubMed  Google Scholar 

  38. Fiume, E., Christou, P., Gianì, S., et al., Introns are key regulatory elements of rice tubulin expression, Planta, 2004, vol. 218, no. 5, pp. 693–703. https://doi.org/10.1007/s00425-003-1150-0

    Article  CAS  PubMed  Google Scholar 

  39. Furger, A., O’Sullivan, J.M., Binnie, A., et al., Promoter proximal splice sites enhance transcription, Genes Dev., 2002, vol. 16, no. 21, pp. 2792–2799. https://doi.org/10.1101/gad.983602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gallegos, J.E. and Rose, A.B., The enduring mystery of intron-mediated enhancement, Plant Sci., 2015, vol. 237, pp. 8–15. https://doi.org/10.1016/j.plantsci.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  41. Gallegos, J.E. and Rose, A.B., Intron DNA Sequences can be more important than the proximal promoter in determining the site of transcript initiation, Plant Cell., 2017, vol. 29, no. 4, pp. 843–853. https://doi.org/10.1105/tpc.17.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallegos, J.E. and Rose, A.B., An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana, Sci. Rep., 2019, vol. 9, no. 1, p. 13777. https://doi.org/10.1038/s41598-019-50389-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallois, J.L., Drouaud, J., Lécureuil, A., et al., Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana, Gene, 2013, vol. 526, no. 2, pp. 299–308. https://doi.org/10.1016/j.gene.2013.05.056

    Article  CAS  PubMed  Google Scholar 

  44. Gianì, S., Altana, A., Campanoni, P., et al., In transgenic rice, α- and β-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression, Transgenic Res., 2009, vol. 18, no. 2, pp. 151–162. https://doi.org/10.1007/s11248-008-9202-7

    Article  CAS  PubMed  Google Scholar 

  45. Gidekel, M., Jimenez, B., and Herrera-Estrella, L., The first intron of the Arabidopsis thaliana gene coding for elongation factor 1β contains an enhancer-like element, Gene, 1996, vol. 170, no. 2, pp. 201–206. https://doi.org/10.1016/0378-1119(95)00837-3

    Article  CAS  PubMed  Google Scholar 

  46. Gromadzka, A.M., Steckelberg, A.L., Singh, K.K., et al., A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs, Nucleic Acids Res., 2016, vol. 44, no. 5, pp. 2348–2361. https://doi.org/10.1093/nar/gkw009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, X., Fernie, A.R., and Yan, J., Deep learning in regulatory genomics: from identification to design, Curr. Opin. Biotechnol., 2023, vol. 79, p. 102887. https://doi.org/10.1016/j.copbio.2022.102887

    Article  CAS  PubMed  Google Scholar 

  48. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, vol. 6, no. 13, pp. 3901–3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon, J.S., Lee, S., Jung, K.H., et al., Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron, Plant Physiol., 2000, vol. 123, no. 3, pp. 1005–1014. https://doi.org/10.1104/pp.123.3.1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeong, Y.M., Mun, J.H., Lee, I., et al., Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members, Plant Physiol., 2006, vol. 140, no. 1, pp. 196–209. https://doi.org/10.1104/pp.105.071316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeong, Y.M., Mun, J.H., Kim, H., et al., An upstream region in the first intron of petunia actin-depolymerizing factor 1 affects tissue-specific expression in transgenic Arabidopsis (Arabidopsis thaliana), Plant J., 2007, vol. 50, no. 2, pp. 230–239. https://doi.org/10.1111/j.1365-313X.2007.03053.x

    Article  CAS  PubMed  Google Scholar 

  52. Jo, B.S. and Choi, S.S., Introns: the functional benefits of introns in genomes, Genomics Inf., 2015, vol. 13, no. 4, pp. 112–118. https://doi.org/10.5808/GI.2015.13.4.112

    Article  Google Scholar 

  53. Jo, S.S. and Choi, S.S., Enrichment of rare alleles within epigenetic chromatin marks in the first intron, Genomics Inf., 2019a, vol. 17, no. 1, p. e9. https://doi.org/10.5808/GI.2019.17.1.e9

    Article  Google Scholar 

  54. Jo, S.S. and Choi, S.S., Analysis of the functional relevance of epigenetic chromatin marks in the first intron associated with specific gene expression patterns, Genome Bio-l. Evol., 2019b, vol. 11, no. 3, pp. 786–797. https://doi.org/10.1093/gbe/evz033

    Article  CAS  Google Scholar 

  55. Karthikeyan, A.S., Ballachanda, D.N., and Raghothama, K.G. Promoter deletion analysis elucidates the role of cis elements and 5′UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis, Physiol. Plant., 2009, vol. 136, no. 1, pp. 10–18. https://doi.org/10.1111/j.1399-3054.2009.01207.x

    Article  CAS  PubMed  Google Scholar 

  56. Kertész, S., Kerényi, Z., Mérai, Z., et al., Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants, Nucleic Acids Res., 2006, vol. 34, no. 21, pp. 6147–6157. https://doi.org/10.1093/nar/gkl737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, M.J., Kim, H., Shin, J.S., et al., Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron, Mol. Genet. Genomics, 2006, vol. 276, no. 4, pp. 351–368. https://doi.org/10.1007/s00438-006-0148-2

    Article  CAS  PubMed  Google Scholar 

  58. Kim, S., Kim, H., Fong, N., et al., Pre-mRNA splicing is a determinant of histone H3K36 methylation, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 33, pp. 13564–13569. https://doi.org/10.1073/pnas.1109475108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kooter, J.M., Matzke, M.A., and Meyer, P., Listening to the silent genes: transgene silencing, gene regulation and pathogen control, Trends Plant Sci., 1999, vol. 4, no. 9, pp. 340–347. https://doi.org/10.1016/s1360-1385(99)01467-3

    Article  CAS  PubMed  Google Scholar 

  60. Korf, I.F. and Rose, A.B., Applying word-based algorithms: The IMEter, Methods Mol. Biol., 2009, vol. 553, pp. 287–301. https://doi.org/10.1007/978-1-60327-563-7_14

    Article  CAS  PubMed  Google Scholar 

  61. Laxa, M., Intron-mediated enhancement: a tool for heterologous gene expression in plants?, Front. Plant Sci., 2017, vol. 7, p. 1977. https://doi.org/10.3389/fpls.2016.01977

    Article  PubMed  PubMed Central  Google Scholar 

  62. Laxa, M., Müller, K., Lange, N., et al., The 5'UTR intron of Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II, Plant Physiol., 2016, vol. 172, no. 1, pp. 313–327. https://doi.org/10.1104/pp.16.00881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Le Hir, H., Gatfield, D., Izaurralde, E., et al., The exonexon junction complex provides a binding platform for factors involved in mRNA export and nonsense mediated mRNA decay, EMBO J., 2001, vol. 20, no. 17, pp. 4987–4997. https://doi.org/10.1093/emboj/20.17.4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Hir, H., Nott, A., and Moore, M.J., How introns influence and enhance eukaryotic gene expression, Trends Biochem. Sci., 2003, vol. 28, no. 4, pp. 215–220. https://doi.org/10.1016/S0968-0004(03)00052-5

    Article  CAS  PubMed  Google Scholar 

  65. Le Hir, H., Saulière, J., and Wang, Z., The exon junction complex as a node of post-transcriptional networks, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 1, pp. 41–54. https://doi.org/10.1038/nrm.2015.7

    Article  CAS  PubMed  Google Scholar 

  66. Liao, L., Ning, G., Liu, C., et al., The intron from the 5'-UTR of the FBP11 gene in petunia displays promoter- and enhancer-like functions, Sci Hortic., 2013, vol. 154, pp. 96–101. https://doi.org/10.1016/j.scienta.2013.02.009

    Article  CAS  Google Scholar 

  67. Lim, C.S.T., Wardell, S.J., Kleffmann, T., et al., The exon-intron gene structure upstream of the initiation codon predicts translation efficiency, Nucleic Acids Res., 2018, vol. 46, no. 9, pp. 4575–4591. https://doi.org/10.1093/nar/gky282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, S. and Cullen, B.R., Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells, RNA, 2003, vol. 9, no. 5, pp. 618–630. https://doi.org/10.1261/rna.5260303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, J., Sivamani, E., Li, X., et al., Activity of the 5' regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes, Plant Cell Rep., 2008, vol. 27, no. 10, pp. 1587–1600. https://doi.org/10.1007/s00299-008-0577-y

    Article  CAS  PubMed  Google Scholar 

  70. Luehrsen, K.R. and Walbot, V., Intron enhancement of gene expression and the splicing efficiency of introns in maize cells, Mol. Gen. Genet., 1991, vol. 225, no. 1, pp. 81–93. https://doi.org/10.1007/BF00282645

    Article  CAS  PubMed  Google Scholar 

  71. Maas, C., Laufs, J., Grant, S., et al., The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold, Plant Mol. Bi-ol., 1991, vol. 16, no. 2, pp. 199–207. https://doi.org/10.1007/BF00020552

    Article  CAS  Google Scholar 

  72. Mascarenhas, D., Mettler, I.J., Pierce, D.A., et al., Intron-mediated enhancement of heterologous gene expression in maize, Plant Mol. Biol., 1990, vol. 15, no. 6, pp. 913–920. https://doi.org/10.1007/BF00039430

    Article  CAS  PubMed  Google Scholar 

  73. McElroy, D., Zhang, W., Cao, J., et al., Isolation of an efficient actin promoter for use in rice transformation, Plant Cell, 1990, vol. 2 no. 2, pp. 163–171. https://doi.org/10.1105/tpc.2.2.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meagher, R.B., McKinney, E.C., and Vitale, A.V., The evolution of new structures: clues from plant cytoskeletal genes, Trends Genet., 1999, vol. 15, no. 7, pp. 278–284. https://doi.org/10.1016/s0168-9525(99)01759-x

    Article  CAS  PubMed  Google Scholar 

  75. Moabbi, A.M., Agarwal, N., El Kaderi, B., et al., Role for gene looping in intron-mediated enhancement of transcription, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 22, pp. 8505–8510. https://doi.org/10.1073/pnas.1112400109

    Article  PubMed  PubMed Central  Google Scholar 

  76. Morello, L. and Breviario, D., Plant spliceosomal introns: not only cut and paste, Curr. Genomics, 2008, vol. 9, no. 4, pp. 227–238. https://doi.org/10.2174/138920208784533629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morello, L., Bardini, M., Sala, F., et al., A long leader intron of the Ostub16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro, Plant J., 2002, vol. 29, no. 1, pp. 33–44. https://doi.org/10.1046/j.0960-7412.2001.01192.x

    Article  CAS  PubMed  Google Scholar 

  78. Morello, L., Bardini, M., Cricrì, M., et al., Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene, Planta, 2006, vol. 223, no. 3, pp. 479–491. https://doi.org/10.1007/s00425-005-0105-z

    Article  CAS  PubMed  Google Scholar 

  79. Morello, L., Gianì, S., Troina, F., et al., Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression, J. Exp. Bot., 2011, vol. 62, no. 2, pp. 533–544. https://doi.org/10.1093/jxb/erq273

    Article  CAS  PubMed  Google Scholar 

  80. Morita, S., Tsukamoto, S., Sakamoto, A., et al., Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants, Plant Biotech. J., 2012, vol. 29, pp. 115–119. https://doi.org/10.5511/plantbiotechnology.11.1207a

    Article  CAS  Google Scholar 

  81. Mun, J.H., Lee, S.Y., Yu, H.J., et al., Petunia actin-depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron, Gene, 2002, vol. 292, nos. 1–2, pp. 233–243. https://doi.org/10.1016/s0378-1119(02)00646-7

    Article  CAS  PubMed  Google Scholar 

  82. Nesic, D., Cheng, J., and Maquat, L.E., Sequences within the last intron function in RNA 3'-end formation in cultured cells, Mol. Cell Biol., 1993, vol. 13, no. 6, pp. 3359–3369. https://doi.org/10.1128/mcb.13.6.3359-3369.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Niu, D.K. and Yang, Y.F., Why eukaryotic cells use introns to enhance gene expression: Splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity, Biol. Direct, 2011, vol. 6, p. 24. https://doi.org/10.1186/1745-6150-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Sullivan, J.M., Tan-Wong, S.M., Morillon, A., et al., Gene loops juxtapose promoters and terminators in yeast, Nat. Genet., 2004, vol. 36, no. 9, pp. 1014–1018. https://doi.org/10.1038/ng1411

    Article  CAS  PubMed  Google Scholar 

  85. Park, S.G., Hannenhalli, S., and Choi, S.S., Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals, BMC Genomics, 2014, vol. 15, no. 1, p. 526. https://doi.org/10.1186/1471-2164-15-526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Parra, G., Bradnam, K., Rose, A.B., et al., Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants, Nucleic Acids Res., 2011, vol. 39, no. 13, pp. 5328–5337. https://doi.org/10.1093/nar/gkr043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Plesse, B., Criqui, M.C., Durr, A., et al., Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum, Plant Mol. Biol., 2001, vol. 45, no. 6, pp. 655–667. https://doi.org/10.1023/a:1010671405594

    Article  CAS  PubMed  Google Scholar 

  88. Proudfoot, N.J., Furger, A., and Dye, M.J., Integrating mRNA processing with transcription, Cell, 2002, vol. 108, no. 4, pp. 501–512. https://doi.org/10.1016/s0092-8674(02)00617-7

    Article  CAS  PubMed  Google Scholar 

  89. Que, Q., Chilton, M.D., de Fontes, C.M., et al., Trait stacking in transgenic crops: challenges and opportunities, GM Crops, 2010, vol. 1, no. 4, pp. 220–229. https://doi.org/10.4161/gmcr.1.4.13439

    Article  PubMed  Google Scholar 

  90. Rethmeier, N., Seurinck, J., Van Montagu, M., et al., Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process, Plant J., 1997, vol. 12, no. 4, pp. 895–899. https://doi.org/10.1046/j.1365-313x.1997.12040895.x

    Article  CAS  PubMed  Google Scholar 

  91. Rogozin, I.B., Carmel, L., Csuros, M., et al., Origin and evolution of spliceosomal introns, Biol. Direct, 2012, vol. 7, p. 11. https://doi.org/10.1186/1745-6150-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rose, A.B., Requirements for intron-mediated enhancement of gene expression in Arabidopsis, RNA, 2002, vol. 8, no. 11, pp. 1444–1453. https://doi.org/10.1017/s1355838202020551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rose, A.B., The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis, Plant J., 2004, vol. 40, no. 5, pp. 744–751. https://doi.org/10.1111/j.1365-313X.2004.02247.x

    Article  CAS  PubMed  Google Scholar 

  94. Rose, A.B., Intron-mediated regulation of gene expression, Curr. Top. Microbiol. Immunol., 2008, vol. 326, pp. 277–290. https://doi.org/10.1007/978-3-540-76776-3_15

    Article  CAS  PubMed  Google Scholar 

  95. Rose, A.B., Introns as gene regulators: a brick on the accelerator, Front. Genet., 2019, vol. 9, p. 672. https://doi.org/10.3389/fgene.2018.00672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rose, A.B. and Beliakoff, J.A., Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing, Plant Physiol., 2000, vol. 122, no. 2, pp. 535–542. https://doi.org/10.1104/pp.122.2.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rose, A.B. and Last, R.L., Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1, Plant J., 1997, vol. 11, no. 3, pp. 455–464. https://doi.org/10.1046/j.1365-313x.1997.11030455.x

    Article  CAS  PubMed  Google Scholar 

  98. Rose, A.B., Elfersi, T., Parra, G., et al., Promoterproximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression, Plant Cell, 2008, vol. 20, no. 3, pp. 543–551. https://doi.org/10.1105/tpc.107.057190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rose, A.B., Emami, S., Bradnam, K., et al., Evidence for a DNA-based mechanism of intron-mediated enhancement, Front. Plant Sci., 2011, vol. 2, p. 98. https://doi.org/10.3389/fpls.2011.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rose, A.B., Carter, A., Korf, I., et al., Intron sequences that stimulate gene expression in Arabidopsis, Plant Mol. Biol., 2016, vol. 92, no. 3, pp. 337–346. https://doi.org/10.1007/s11103-016-0516-1

    Article  CAS  PubMed  Google Scholar 

  101. Rowlands, C.F., Baralle, D., and Ellingford, J.M., Machine learning approaches for the prioritization of genomic variants impacting pre-mRNA splicing, Cells, 2019, vol. 8, no. 12, p. 1513. https://doi.org/10.3390/cells8121513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Salgueiro, S., Pignocchi, C., and Parry, M.A., Intronmediated gusA expression in tritordeum and wheat resulting from particle bombardment, Plant Mol. Biol., 2000, vol. 42, no. 4, pp. 615–622. https://doi.org/10.1023/a:1006331831858

    Article  CAS  PubMed  Google Scholar 

  103. Samadder, P., Sivamani, E., Lu, J., et al., Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells, Mol. Genet. Genomics, 2008, vol. 279, no. 4, pp. 429–439. https://doi.org/10.1007/s00438-008-0323-8

    Article  CAS  PubMed  Google Scholar 

  104. Shaul, O., Unique aspects of plant nonsense-mediated mRNA decay, Trends Plant Sci., 2015, vol. 20, no. 11, pp. 767–779. https://doi.org/10.1016/j.tplants.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  105. Shaul, O., How introns enhance gene expression, Int. J. Biochem. Cell Biol., 2017, vol. 91, pp. 145–155. https://doi.org/10.1016/j.biocel.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  106. Shen, X., Jiang, C., Wen, Y., et al., A Brief review on deep learning applications in genomic studies, Front. Syst. Biol., 2022, vol. 2, p. 877717. https://doi.org/10.3389/fsysb.2022.877717

    Article  Google Scholar 

  107. Silva, J.C.F., Teixeira, R.M., Silva, F.F., et al., Machine learning approaches and their current application in plant molecular biology: A systematic review, Plant Sci., 2019, vol. 284, pp. 37–47. https://doi.org/10.1016/j.plantsci.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  108. Simna, S.P. and Han, Z., Prospects of non-coding elements in genomic DNA based gene therapy, Curr. Gene Ther., 2022, vol. 22, no. 2, pp. 89–103. https://doi.org/10.2174/1566523221666210419090357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sinibaldi, R.M. and Mettler, I.J., Intron splicing and intron-mediated enhanced expression in monocots, Prog. Nucleic Acid Res. Mol. Biol., 1992, vol. 42, pp. 229–257. https://doi.org/10.1016/s0079-6603(08)60577-2

    Article  CAS  PubMed  Google Scholar 

  110. Snowden, K.C., Buchhholz, W.G., and Hall, T.C., Intron position affects expression from the tpi promoter in rice, Plant Mol. Biol., 1996, vol. 31, no. 3, pp. 689–692. https://doi.org/10.1007/BF00042241

    Article  CAS  PubMed  Google Scholar 

  111. Spies, N., Nielsen, C.B., Padgett, R.A., et al., Biased chromatin signatures around polyadenylation sites and exons, Mol. Cell, 2009, vol. 36, no. 2, pp. 245–254. https://doi.org/10.1016/j.molcel.2009.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tanaka, A., Mita, S., Ohta, S., et al., Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron, Nucleic Acids Res., 1990, vol. 18, no. 23, pp. 6767–6770. https://doi.org/10.1093/nar/18.23.6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. To, J.P.C., Davis, I.W., Marengo, M.S., et al., Expression elements derived from plant sequences provide effective gene expression regulation and new opportunities for plant biotechnology traits, Front. Plant Sci., 2021, vol. 12, p. 712179. https://doi.org/10.3389/fpls.2021.712179

    Article  PubMed  PubMed Central  Google Scholar 

  114. Travella, S., Ross, S.M., Harden, J., et al., A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques, Plant Cell Rep., 2005, vol. 23, no. 12, pp. 780–789. https://doi.org/10.1007/s00299-004-0892-x

    Article  CAS  PubMed  Google Scholar 

  115. Valencia, P., Dias, A.P., and Reed, R., Splicing promotes rapid and efficient mRNA export in mammalian cells, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 9, pp. 3386–3391. https://doi.org/10.1073/pnas.0800250105

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vasil, V., Clancy, M., Ferl, R.J., et al., Increased gene expression by the first intron of maize shrunken-1 locus in grass species, Plant Physiol., 1989, vol. 91, no. 4, pp. 1575–1579. https://doi.org/10.1104/pp.91.4.1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vaucheret, H., Béclin, C., Elmayan, T., et al., Transgene-induced gene silencing in plants, Plant J., 1998, vol. 16, no. 6, pp. 651–659. https://doi.org/10.1046/j.1365-313x.1998.00337.x

    Article  CAS  PubMed  Google Scholar 

  118. Vitale, A., Wu, R.J., Cheng, Z., et al., Multiple conserved 5' elements are required for high-level pollen expression of the Arabidopsis reproductive actin ACT1, Plant Mol. Biol., 2003, vol. 52, no. 6, pp. 1135–1151. https://doi.org/10.1023/b:plan.0000004309.06973.16

    Article  CAS  PubMed  Google Scholar 

  119. Weise, A., Rodriguez-Franco, M., Timm, B., et al., Use of Physcomitrella patens actin 5′ regions for high transgene expression: importance of 5' introns, Appl. Microbiol. Biotechnol., 2006, vol. 70, no. 3, pp. 337–345. https://doi.org/10.1007/s00253-005-0087-6

    Article  CAS  PubMed  Google Scholar 

  120. Xiao, G., Zhang, Z.Q., Yin, C.F., et al., Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus, Gene, 2014, vol. 545, no. 1, pp. 45–55. https://doi.org/10.1016/j.gene.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  121. Zalabák, D. and Ikeda, Y., First come, first served: sui generis features of the first intron, Plants, 2020, vol. 9, no. 7, p. 911. https://doi.org/10.3390/plants9070911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Y., Yan, J., Chen, S., et al., A Review on the application of deep learning in bioinformatics, Curr. Bioinf., 2020, vol. 15, no. 8, pp. 898–911. https://doi.org/10.2174/1574893615999200711165743

    Article  CAS  Google Scholar 

  123. Zou, J., Huss, M., Abid, A., et al., A primer on deep learning in genomics, Nat. Genet., 2019, vol. 51, no. 1, pp. 12–18. https://doi.org/10.1038/s41588-018-0295-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. O. Pydiura or Ya. B. Blume.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pydiura, M.O., Blume, Y.B. Mechanisms of Intron-Mediated Enhancement of Expression: Welcome to the Hotel California. Cytol. Genet. 57, 413–431 (2023). https://doi.org/10.3103/S0095452723050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723050055

Keywords

Navigation