Skip to main content
Log in

Molecular Organization and Intragenomic Variability of Intergenic Spacer of 5S rRNA Genes in Colobanthus quitensis

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The intergenic spacer (IGS) of 5S ribosomal RNA genes (5S rDNA) (that are present in the genome of all living organisms) is characterized by a high variability, due to which it is a convenient and widely used object for clarifying the issues of genome evolution, population genetics, systematics, etc. The aim of this work was to study the IGS of 5S rDNA of the Antarctic pearlwort Colobanthus quitensis. The nucleotide sequence was determined by the methods of molecular genetic analysis, and molecular organization of the C. quitensis 5S rDNA IGS was studied. It was demonstrated that it contains the regulatory elements typical for other vascular plants. The existence of at least two classes of 5S rDNA repeats in the individual genome (that differ significantly in the length and nucleotide sequence of IGS) was established. In addition, based on differences in the length and nucleotide sequence, two subclasses of repeats with a long IGS and three subclasses with a short IGS were identified. A comparison of 5S rDNA IGS sequences in C. quitensis and Silene latifolia Poir. (a member of another section of the Caryophyllaceae family) demonstrated significant differences in the structure of a spacer region of 5S rRNA genes (except for its parts containing regulatory elements). In general, data obtained indicate a significant level of intragenomic polymorphism of C. quitensis 5S rDNA IGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Androsiuk, P., Chwedorzewska, K., Szandar, K., and Giełwanowska, I., Genetic variability of Colobanthus quitensis from King George Island (Antarctica), Pol. Polar Res., 2015, vol. 36, pp. 281–295. https://doi.org/10.1515/popore-2015-0017

    Article  Google Scholar 

  2. Bennett, M.D., Smith, J.B., and Smith, R.I.L., DNA amounts of angiosperms from the Antarctic and South Georgia, Environ. Exp. Bot., 1982, vol. 22, pp. 307–318. https://doi.org/10.1016/0098-8472(82)90023-5

    Article  Google Scholar 

  3. Biersma, E.M., Torres-Díaz, C., Molina-Montenegro, M.A., et al., Multiple late-Pleistocene colonization events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora, J. Biogeogr., 2020, vol. 47, pp. 1663–1673. https://doi.org/10.1111/jbi.13843

    Article  Google Scholar 

  4. Chen, G., Stepanenko, A., and Borisjuk, N., Mosaic arrangement of the 5S rDNA in the aquatic plant Landoltia punctata (Lemnaceae), Front. Plant Sci., 2021, vol. 12, pp. 1–10. https://doi.org/10.3389/fpls.2021.678689

    Article  Google Scholar 

  5. Cuba-Díaz, M., Cerda, G., Rivera, C., and Gómez, A., Genome size comparison in Colobanthus quitensis populations show differences in species ploidy, Polar Biol., 2017, vol. 40, pp. 1475–1480. https://doi.org/10.1007/s00300-016-2058-z

    Article  Google Scholar 

  6. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 11, pp. 11–15

    Google Scholar 

  7. Garcia, S., Panero, J.L., Siroky, J., and Kovarik, A., Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family, BMC Plant Biol., 2010, vol. 10, pp. 1–18. https://doi.org/10.1186/1471-2229-10-176

    Article  CAS  Google Scholar 

  8. Greenberg, A.K. and Donoghue, M.J., Molecular systematics and character evolution in Caryophyllaceae, Taxon, 2011, vol. 60, pp. 1637–1652. https://doi.org/10.1002/tax.606009

    Article  Google Scholar 

  9. Hemleben, V., Grierson, D., Borisjuk, N., et al., Personal perspectives on plant ribosomal RNA genes research: From precursor-rRNA to molecular evolution, Front. Plant Sci., 2021, vol. 12. https://doi.org/10.3389/fpls.2021.797348

  10. Ishchenko, O.O., Panchuk, I.I., Andreev, I.O., et al., Molecular organization of 5S ribosomal DNA of Deschampsia antarctica, Cytol. Genet., 2018, vol. 52, pp. 416–421. https://doi.org/10.3103/S0095452718060105

    Article  Google Scholar 

  11. Ishchenko, O.O., Mel’nyk, V.M., Parnikoza, I.Y., et al., Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae), Cytol. Genet., 2020, vol. 54, pp. 505–513. https://doi.org/10.3103/S0095452720060055

    Article  Google Scholar 

  12. Kang, Y., Lee, H., Kim, M.K., et al., 2016. The complete chloroplast genome of Antarctic pearlwort, Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae), Mitochondrial DNA, Part A, 2018. vol. 27. pp. 4677–4678. https://doi.org/10.3109/19401736.2015.1106498

    Article  CAS  Google Scholar 

  13. Koc, J., Androsiuk, P., Chwedorzewska, K.J., et al., Range-wide pattern of genetic variation in Colobanthus quitensis, Polar Biol., 2018, vol. 41, pp. 2467–2479. https://doi.org/10.1007/s00300-018-2383-5

    Article  Google Scholar 

  14. Okonechnikov, K., Golosova, O., Fursov, M., et al., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166–1167. https://doi.org/10.1093/BIOINFORMATICS/BTS091

    Article  CAS  PubMed  Google Scholar 

  15. Pascual-Díaz, J.P., Serçe, S., Hradecká, I., et al., Genome size constancy in Antarctic populations of Colobanthus quitensis and Deschampsia antarctica, Polar Biol., 2020, vol. 43, pp. 1407–1413. https://doi.org/10.1007/s00300-020-02699-y

    Article  Google Scholar 

  16. Siljak-Yakovlev, S., Lamy, F., Takvorian, N., et al., Genome size and chromosome number of ten plant species from Kerguelen Islands, Polar Biol., 2020, vol. 43, pp. 1985–1999. https://doi.org/10.1007/S00300-020-02755-7/FIGURES/3

    Article  Google Scholar 

  17. Soltis, D.E., Soltis, P.S., and Tate, J.A., Advances in the study of polyploidy since plant speciation, New Phytol., 2004, vol. 161, pp. 173–191. https://doi.org/10.1046/j.1469-8137.2003.00948.x

    Article  CAS  Google Scholar 

  18. Tynkevych, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA of Rosa nitida Willd., Visn. Ukr. Tov. Genet. Sel., 2011, vol. 9, pp. 276–282.

    Google Scholar 

  19. Tynkevich, Y.O., Shelyfist, A.Y., Kozub, L.V., et al., 5S ribosomal DNA of genus Solanum: molecular organization, evolution, and taxonomy, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.852406

  20. Volkov, R.A., Ed., 5S Ribosomal DNA of Flowering Plants, Chernivtsi: Yuriy Fedkovich Chernivtsi Natl Univ., 2021.

    Google Scholar 

  21. Volkov, R.A., Panchuk, I.I., Borisjuk, L.G., and Borisjuk, M.V., Plant rDNA: organization, evolution, and using, Tsitol. Genet., 2003, vol. 37, pp. 72–78.

    CAS  PubMed  Google Scholar 

  22. Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., et al., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, pp. 1–15. https://doi.org/10.1186/s12870-017-0978-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. A. Zelensky for his assistance in carrying out this work.

Funding

This work was carried out within the “Genetic and Physiological–Biochemical Mechanisms of Plant Adaptation to Extreme Environmental Conditions” scientific research (2021–2025), no. 0120U105249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving human participants or animals as objects of study.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, I.O., Mel’nyk, V.M., Parnikoza, I.Y. et al. Molecular Organization and Intragenomic Variability of Intergenic Spacer of 5S rRNA Genes in Colobanthus quitensis. Cytol. Genet. 57, 399–405 (2023). https://doi.org/10.3103/S0095452723050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723050018

Navigation