Skip to main content
Log in

A neurodynamic approach for joint chance constrained rectangular geometric optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper considers a nonconvex geometric optimization problem with two-sided joint probabilistic constraints, namely rectangular constraints. We transform the stochastic problem into a deterministic one. Further, we use a logarithmic transformation combined with the arithmetic–geometric mean inequality to obtain a biconvex problem. Based on the biconvex structure of the obtained program and the corresponding partial KKT system, we propose a dynamical neural network to solve the initial rectangular problem. The main feature of our framework is to propose a converging method to solve rectangular joint chance-constrained optimization problems without the use of any convex approximation unlike the state-of-the-art solving methods. To illustrate the performances of our approach, we conducted several tests on a minimum transport cost problem and a shape optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and are also available from the corresponding author on reasonable request.

References

  1. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 6(1), 73–79 (1959). https://doi.org/10.1287/mnsc.6.1.73

    Article  MathSciNet  MATH  Google Scholar 

  2. Perlumutter, D.D.: Geometric programming-theory and application. AIChE J. 13(4), 829–830 (1967). https://doi.org/10.1002/aic.690130408

    Article  Google Scholar 

  3. Hoburg, W., Abbeel, P.: Geometric programming for aircraft design optimization. AIAA J. 52(11), 2414–2426 (2012). https://doi.org/10.2514/6.2012-1680

    Article  Google Scholar 

  4. Chiang, M.: Geometric programming for communication systems. Found. Trends® Commun. Inf. Theory 2(1–2), 1–154 (2005). https://doi.org/10.1561/0100000005

    Article  MATH  Google Scholar 

  5. Chiang, M., Tan, C.W., Palomar, D.P., O’neil, D., Julian, D.: Power control by geometric programming. IEEE Trans. Wirel. Commun. 6(7), 2640–2651 (2007). https://doi.org/10.1109/TWC.2007.05960

    Article  Google Scholar 

  6. Boyd, S.P., Kim, S., Patil, D., Horowitz, M.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005). https://doi.org/10.1287/opre.1050.0254

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, C.-S., Xu, G., Wang, L.: An improved geometric programming approach for optimization of biochemical systems. J. Appl. Math. (2014). https://doi.org/10.1155/2014/719496

    Article  MATH  Google Scholar 

  8. Vanderhaegen, J.P., Brodersen, R.W.: Automated design of operational transconductance amplifiers using reversed geometric programming. In: Proceedings of the 41st Annual Design Automation Conference. DAC ’04, pp. 133–138. Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/996566.996608

  9. Dupačová, J.: Stochastic geometric programming with an application. Kybernetika 46(3), 374–386 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Liu, J., Lisser, A., Chen, Z.: Stochastic geometric optimization with joint probabilistic constraints. Oper. Res. Lett. 44(5), 687–691 (2016). https://doi.org/10.1016/j.orl.2016.08.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, J., Peng, S., Lisser, A., Chen, Z.: Rectangular chance constrained geometric optimization. Optim. Eng. 21(2), 537–566 (2019). https://doi.org/10.1007/s11081-019-09460-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, G.: Global optimization of signomial geometric programming problems. Eur. J. Oper. Res. 233(3), 500–510 (2014). https://doi.org/10.1016/j.ejor.2013.10.016

    Article  MathSciNet  MATH  Google Scholar 

  13. Faybusovich, L.: Dynamical systems which solve optimization problems with linear constraints. IMA J. Math. Control Inf. 8(2), 135–149 (1991). https://doi.org/10.1093/imamci/8.2.135

    Article  MathSciNet  MATH  Google Scholar 

  14. Schropp, J., Singer, I.: A dynamical systems approach to constrained minimization. Numer. Funct. Anal. Optim. 21(3–4), 537–551 (2000). https://doi.org/10.1080/01630560008816971

    Article  MathSciNet  MATH  Google Scholar 

  15. Aluffi-Pentini, F., Parisi, V., Zirilli, F.: Global optimization and stochastic differential equations. J. Optim. Theory Appl. 47(1), 1–16 (1985). https://doi.org/10.1007/bf00941312

    Article  MathSciNet  MATH  Google Scholar 

  16. Effati, S., Nazemi, A.R.: Neural network models and its application for solving linear and quadratic programming problems. Appl. Math. Comput. 172(1), 305–331 (2006). https://doi.org/10.1016/j.amc.2005.02.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, J., Lisser, A.: A second-order cone programming approach for linear programs with joint probabilistic constraints. Oper. Res. Lett. 40(5), 325–328 (2012). https://doi.org/10.1016/j.orl.2012.06.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Adasme, P., Lisser, A.: A stochastic geometric programming approach for power allocation in wireless networks. Wirel. Netw. (2023). https://doi.org/10.1007/s11276-023-03295-8

    Article  MATH  Google Scholar 

  19. Jiang, M., Meng, Z., Shen, R.: Partial exactness for the penalty function of biconvex programming. Entropy (2021). https://doi.org/10.3390/e23020132

    Article  MathSciNet  Google Scholar 

  20. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007). https://doi.org/10.1007/s00186-007-0161-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Foias, C., Frazho, A.E.: Positive definite block matrices. Commut. Lift. Approach Interpolat. Prob. (1990). https://doi.org/10.1007/978-3-0348-7712-1_16

    Article  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3

    Book  MATH  Google Scholar 

  23. Rao, S.S.: 8 Geometric Programming, pp. 492–543. Wiley, New Jersey (2009). https://doi.org/10.1002/9780470549124.ch8

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siham Tassouli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassouli, S., Lisser, A. A neurodynamic approach for joint chance constrained rectangular geometric optimization. Optim Lett (2023). https://doi.org/10.1007/s11590-023-02050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-023-02050-4

Keywords

Navigation