Skip to main content
Log in

On the Existence of Hereditarily \( G \)-Permutable Subgroups in Exceptional Groups \( G \) of Lie Type

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

A subgroup \( A \) of a group \( G \) is \( G \)-permutable in \( G \) if for every subgroup \( B\leq G \) there exists \( x\in G \) such that \( AB^{x}=B^{x}A \). A subgroup \( A \) is hereditarily \( G \)-permutable in \( G \) if \( A \) is \( E \)-permutable in every subgroup \( E \) of \( G \) which includes \( A \). The Kourovka Notebook has Problem 17.112(b): Which finite nonabelian simple groups \( G \) possess a proper hereditarily \( G \)-permutable subgroup? We answer this question for the exceptional groups of Lie type. Moreover, for the Suzuki groups \( G\cong{{}^{2}\!\operatorname{B}_{2}}(q) \) we prove that a proper subgroup of \( G \) is \( G \)-permutable if and only if the order of the subgroup is 2. In particular, we obtain an infinite series of groups with \( G \)-permutable subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ore O., “Contributions in the theory of groups of finite order,” Duke Math. J., vol. 5, no. 2, 431–460 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  2. Doerk K. and Hawkes T., Finite Soluble Groups, De Gruyter, Berlin and New York (1992).

    Book  MATH  Google Scholar 

  3. Stonehewer S.E., “Permutable subgroups of infinite groups,” Math. Z., vol. 125, no. 1, 1–16 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. Ito N. and Szep J., “Uber die Quasinormalteiler von endlichen Gruppen,” Acta Sci. Math., vol. 23, no. 1, 168–170 (1962).

    MATH  Google Scholar 

  5. Isaacs I.M., Finite Group Theory, Amer. Math. Soc., Providence (2008) (Graduate Texts Math.; vol. 92).

    MATH  Google Scholar 

  6. Guo W.B., Skiba A.N., and Shum K.P., “\( X \)-Quasinormal subgroups,” Sib. Math. J., vol. 48, no. 4, 593–605 (2007).

    Article  MATH  Google Scholar 

  7. Guo W.B., Shum K.P., and Skiba A.N., “\( X \)-Semipermutable subgroups of finite groups,” J. Algebra, vol. 315, no. 1, 31–41 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo W., Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, New York, Dordrecht, and London (2015).

    Book  MATH  Google Scholar 

  9. The Kourovka Notebook: Unsolved Problems in Group Theory. 20th ed., Khukhro E.I. and Mazurov V.D. (eds.), Sobolev Inst. Math., Novosibirsk (2022).

    MATH  Google Scholar 

  10. Vasil’ev A.F. and Tyutyanov V.N., “Alternating groups with hereditarily \( G \)-permutable subgroup,” Izv. F. Skorina Gomel State Univ., vol. 5, no. 74, 148–150 (2012).

    Google Scholar 

  11. Tyutyanov V.N. and Bychkov P.V., “On hereditarily \( G \)-permutable subgroups of sporadic groups,” Vestnik Polotsk State Univ., vol. 3, 23–29 (2008).

    Google Scholar 

  12. Galt A.A. and Tyutyanov V.N., “On the existence of \( G \)-permutable subgroups in simple sporadic groups,” Sib. Math. J., vol. 63, no. 4, 691–698 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson R.A., The Finite Simple Groups, Springer, London (2009) (Graduate Texts Math.; vol. 251).

    Book  MATH  Google Scholar 

  14. Ito N., “On the factorizations of the linear fractional groups \( LF(2,p^{n}) \),” Acta Sci. Math., vol. 15, 79–84 (1953).

    MathSciNet  MATH  Google Scholar 

  15. Liebeck M.W., Praeger C.E., and Saxl J., The Maximal Factorizations of the Finite Simple Groups and Their Automorphism Groups, Amer. Math. Soc., Providence (1990) (Mem. Amer. Math. Soc.; vol. 432).

    Book  MATH  Google Scholar 

  16. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., and Wilson R.A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon, Oxford (1985).

    MATH  Google Scholar 

  17. Bray J.N., Holt D.F., and Roney-Dougal C.M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge University, Cambridge (2013) (Lond. Math. Soc. Lect. Note Ser.; vol. 407).

    Book  MATH  Google Scholar 

  18. Gorenstein D. and Lyons R., “The local structure of finite groups of characteristic \( 2 \) type,” Mem. Amer. Math. Soc., vol. 42, 1–731 (1983).

    MathSciNet  MATH  Google Scholar 

  19. Kleidman P.B. and Liebeck M., The Subgroup Structure of the Finite Classical Groups, Cambridge University, Cambridge (1990) (Lond. Math. Soc. Lect. Note Ser.; vol. 129).

    Book  MATH  Google Scholar 

  20. Craven D.A., “The maximal subgroups of the exceptional groups \( F_{4}(q) \), \( E_{6}(q) \) and \( {}^{2}E_{6}(q) \) and related almost simple groups,” Invent. Math. (2023) (https://doi.org/10.1007/s00222-023-01208-2).

  21. Craven D.A., On the Maximal Subgroups of \( E_{7}(q) \) and Related Almost Simple Groups (2022) (arXiv:2201.07081v1).

    Google Scholar 

  22. Ballantyne J., Bates C., Rowley P., “The maximal subgroups of \( E_{7}(2) \),” LMS J. Comput. Math., vol. 18, no. 1, 323–371 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. Liebeck M.W. and Seitz G.M., “A survey of maximal subgroups of exceptional groups of Lie type,” in: Groups, Combinatorics and Geometry (Durham, 2001), World Sci., River Edge (2003), 139–146.

  24. Liebeck M.W., Saxl J., and Seitz G.M., “Subgroups of maximal rank in finite exceptional groups of Lie type,” Proc. London Math. Soc., vol. 65, no. 3, 297–325 (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by a joint grant of the Belorussian Republican Foundation for Fundamental Research (Project F23RSF-237) and the Russian Science Foundation No. 23-41-10003, https://rscf.ru/en/project/23-41-10003/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Galt.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 5, pp. 935–945. https://doi.org/10.33048/smzh.2023.64.504

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galt, A.A., Tyutyanov, V.N. On the Existence of Hereditarily \( G \)-Permutable Subgroups in Exceptional Groups \( G \) of Lie Type. Sib Math J 64, 1110–1116 (2023). https://doi.org/10.1134/S003744662305004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662305004X

Keywords

UDC

Navigation