Skip to main content
Log in

Continuity of the Mappings with Finite Distortion of the Sobolev Class \( W^{1}_{\nu,\operatorname{loc}} \) on Carnot Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove the continuity of the mappings with finite distortion of the Sobolev class \( W^{1}_{\nu,\operatorname{loc}} \) on Carnot groups and establish that these mappings are \( \mathcal{P} \)-differentiable almost everywhere and have the Luzin \( \mathcal{N} \)-property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \( dx \) is the volume form on \( 𝔾 \) of degree \( N \), then \( i(X_{1j}) \) is a degree \( N-1 \) form which on smooth vector fields \( Y_{1},Y_{2},\dots,Y_{N-1} \) defined on \( 𝔾 \) takes the value \( i(X_{1j})(Y_{1},Y_{2},\dots,Y_{N-1})=dx(X_{1j},Y_{1},Y_{2},\dots,Y_{N-1}) \).

  2. Henceforth we denote the Riemannian differential of \( \varphi:\Omega\to 𝔾 \) at \( x \) by \( {\mathcal{D}}\varphi(x) \).

  3. Here we should appreciate Lemma 1 and Property 2 (claims (3) and (4)) in order for the restriction \( \varphi|_{\partial U} \) to be continuous, and for the convergence \( \varphi_{l}|_{\partial U}\to\varphi|_{\partial U} \) as \( l\to\infty \) to be uniform, see Property 2 (claim (6)), as well as the details in [11].

  4. According to the properties of capacity zero sets (see [11, Proposition 5]) we have \( S(x,r)=\{y\in U:\rho(x,y)=r\}=\{y\in\widetilde{U}:\rho(x,y)=r\} \) for all \( x\in U \) and almost all \( r\in\bigl{(}0,\frac{1}{2}\operatorname{dist}(x,\partial U)\bigr{)} \).

  5. The mapping \( \varphi\in W_{\nu}^{1}(\Omega) \) has the Luzin \( N^{-1} \)-property whenever the preimage of each negligible set is negligible. This property is obviously equivalent to the following: The image of each set of nonzero measure is a set of nonzero measure.

  6. At that time this class of mappings was nameless. Its modern name was proposed in [21].

References

  1. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989) [French].

    Article  MathSciNet  MATH  Google Scholar 

  2. Folland G.B. and Stein E.M., Hardy Spaces on Homogeneous Groups, Princeton University, Princeton (1982) (Princeton Math. Notes; vol. 28).

    MATH  Google Scholar 

  3. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin and Heidelberg (2007) (Springer Monogr. Math.).

    MATH  Google Scholar 

  4. Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University, Princeton (1993) (Princeton Math. Ser., vol. 43).

    MATH  Google Scholar 

  5. Korányi A. and Reimann H.M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., vol. 111, 1–87 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. Vodopyanov S.K., “\( \mathcal{P} \)-Differentiability on Carnot groups in various topologies and related topics,” in: Proceedings on Analysis and Geometry, Sobolev Institute of Mathematics, Novosibirsk (2000), 603–670.

  7. Vodopyanov S.K., “Differentiability of maps of Carnot groups of Sobolev classes,” Sb. Math., vol. 194, no. 6, 857–877 (2003).

    Article  MathSciNet  Google Scholar 

  8. Federer H., Geometric Measure Theory, Springer, New York (1960).

    MATH  Google Scholar 

  9. Reshetnyak Yu.G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    Book  MATH  Google Scholar 

  10. Rickman S., Quasiregular Mappings, Springer, Berlin (1993).

    Book  MATH  Google Scholar 

  11. Vodopyanov S.K. and Kudryavtseva N.A., “Nonlinear potential theory for Sobolev spaces on Carnot groups,” Sib. Math. J., vol. 50, no. 5, 803–819 (2009).

    Article  MathSciNet  Google Scholar 

  12. Chernikov V.M. and Vodop’yanov S.K., “Sobolev spaces and hypoelliptic equations. I, II,” Siberian Adv. Math., vol. 6, no. 3, 27–67 (1996).

    MathSciNet  Google Scholar 

  13. Dairbekov N.S., “Mappings with bounded distortion of two-step Carnot groups,” in: Proceedings on Geometry and Analysis. Russian, Sobolev Institute, Novosibirsk (2000), 122–155.

  14. Basalaev S.G., “Mollifications of contact mappings of Engel group,” Vladikavkaz. Mat. Zh., vol. 25, no. 1, 5–19 (2023).

    MathSciNet  MATH  Google Scholar 

  15. Kleiner B., Müller S., and Xie X., Pansu Pullback and Exterior Differentiation for Sobolev Maps on Carnot Groups. arXiv:2007.06694v2 (2021).

    Google Scholar 

  16. Basalaev S.G. and Vodopyanov S.K., “Hölder continuity of the traces of Sobolev functions to hypersurfaces in Carnot groups and the \( \mathcal{P} \)-differentiability of Sobolev mappings,” Sib. Math. J., vol. 64, no. 4, 819–835 (2023).

    Article  MATH  Google Scholar 

  17. Bondarev S.A., “Lebesgue points for functions from the generalized Sobolev classes \( M^{p}_{\alpha}(X) \) in the critical case,” J. Belorussian State University. Math. Inform., vol. 3, 4–11 (2018).

    MathSciNet  MATH  Google Scholar 

  18. Iwaniec T. and Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford University, Oxford (2001) (Oxford Sci. Publ.).

    MATH  Google Scholar 

  19. Vodopyanov S.K., Function-Theoretic Approach to Some Problems of the Theory of Space Quasiconformal Mappings. Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Sobolev Institute of Mathematics, Novosibirsk (1975) [Russian].

    Google Scholar 

  20. Vodopyanov S.K. and Goldshtein V.M., “Quasiconformal mappings and spaces of functions with generalized first derivatives,” Sib. Math. J., vol. 17, no. 3, 399–411 (1976).

    Article  Google Scholar 

  21. Iwaniec T. and Šverak V., “On mappings with integrable dilatation,” Proc. Amer. Math. Soc., vol. 118, 181–188 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. Ball J.M., “Convexity conditions and existence theorems in nonlinear elasticity,” Arch. Ration. Mech. Anal., vol. 63, 337–403 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  23. Ball J.M., “Global invertibility of Sobolev functions and the interpretation of matter,” Proc. Royal Soc. Edinburgh, vol. 88A, 315–328 (1981).

    Article  MATH  Google Scholar 

  24. Molchanova A. and Vodop’yanov S., “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity,” Calc. Var., vol. 59, no. 1 (2020) (Article no. 17).

  25. Hencl S. and Koskela P., Lectures on Mappings of Finite Distortion, Springer Intern. Publ., Switzerland (2014) (Lect. Notes Math.; vol. 2096).

    Book  MATH  Google Scholar 

  26. Vodop’yanov S.K., “Foundations of the theory of mappings with bounded distortion on Carnot groups,” in: The Interaction of Analysis and Geometry, Amer. Math. Soc., Providence (2007), 303–344 (Contemp. Math.; vol. 424).

  27. Vodopyanov S.K. and Ukhlov A.D., “Sobolev spaces and \( (P,Q) \)-quasiconformal mappings of Carnot groups,” Sib. Math. J., vol. 39, no. 4, 665–682 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was carried out in the framework of the State Task of the Ministry of Science and Higher Education of the Russian Federation for the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (Project FWNF–2022–0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Vodopyanov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 5, pp. 912–934. https://doi.org/10.33048/smzh.2023.64.503

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodopyanov, S.K. Continuity of the Mappings with Finite Distortion of the Sobolev Class \( W^{1}_{\nu,\operatorname{loc}} \) on Carnot Groups. Sib Math J 64, 1091–1109 (2023). https://doi.org/10.1134/S0037446623050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623050038

Keywords

UDC

Navigation