skip to main content
research-article

Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws

Authors Info & Claims
Published:15 December 2023Publication History
Skip Abstract Section

Abstract

Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques increase the robustness of DG methods significantly, they are also computationally more demanding than standard weak form nodal DG methods. We present several implementation techniques to improve the efficiency of flux differencing DG methods that use tensor product quadrilateral or hexahedral elements, in 2D or 3D, respectively. Focus is mostly given to CPUs and DG methods for the compressible Euler equations, although these techniques are generally also useful for other physical systems, including the compressible Navier-Stokes and magnetohydrodynamics equations. We present results using two open source codes, Trixi.jl written in Julia and FLUXO written in Fortran, to demonstrate that our proposed implementation techniques are applicable to different code bases and programming languages.

REFERENCES

  1. [1] Abgrall Rémi, Nordström Jan, Öffner Philipp, and Tokareva Svetlana. 2020. Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems. J Sci. Comput. 85, 2 (2020), 129. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Ålund Oskar and Nordström Jan. 2019. Encapsulated high order difference operators on curvilinear non-conforming grids. J. Comput. Phys. 385 (2019), 209224. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Bergmann M., Morsbach C., and Ashcroft G.. 2020. Assessment of split form nodal discontinuous Galerkin schemes for the LES of a low pressure turbine profile. In Direct and Large Eddy Simulation XII (ERCOFTACSeries), Vol. 27. Springer Nature, Cham, 365371. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Bezanson Jeff, Edelman Alan, Karpinski Stefan, and Shah Viral B.. 2017. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 1 (2017), 6598. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Carpenter Mark H., Fisher Travis C., Nielsen Eric J., and Frankel Steven H.. 2014. Entropy stable spectral collocation schemes for the Navier-Stokes equations: Discontinuous interfaces. SIAM J. Scient. Comput. 36, 5 (2014), B835–B867. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Chan Jesse. 2018. On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362 (2018), 346374. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Chan Jesse. 2019. Skew-symmetric entropy stable modal discontinuous Galerkin formulations. J Sci. Comput. 81, 1 (2019), 459485. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Chan Jesse, Fernández David C. Del Rey, and Carpenter Mark H.. 2019. Efficient entropy stable Gauss collocation methods. SIAM J. Scient. Comput. 41, 5 (2019), A2938–A2966. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Chandrashekar Praveen. 2013. Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14, 5 (2013), 12521286. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Chen Tianheng and Shu Chi-Wang. 2017. Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345 (2017), 427461. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Crean Jared, Hicken Jason E., Fernández David C. Del Rey, Zingg David W., and Carpenter Mark H.. 2018. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356 (2018), 410438. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Elrod Chris. 2021. Roadmap to Julia BLAS and Linear Algebra. Retrieved from https://www.youtube.com/watch?v=KQ8nvlURX4MGoogle ScholarGoogle Scholar
  13. [13] Fernández David C. Del Rey, Boom Pieter D., and Zingg David W.. 2014. A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266 (2014), 214239. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Fernández David C. Del Rey, Hicken Jason E., and Zingg David W.. 2014. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95 (2014), 171196. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Fisher Travis C., Carpenter Mark H., Nordström Jan, Yamaleev Nail K., and Swanson Charles. 2013. Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions. J. Comput. Phys. 234 (2013), 353375. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Fjordholm Ulrik Skre, Mishra Siddhartha, and Tadmor Eitan. 2012. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 2 (2012), 544573. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Flad David and Gassner Gregor. 2017. On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350 (2017), 782795. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Fog Agner. 2021. Instruction tables. (082021). Retrieved from https://www.agner.org/optimize/instruction_tables.pdfGoogle ScholarGoogle Scholar
  19. [19] Gassner Gregor Josef. 2013. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Scient. Comput. 35, 3 (2013), A1233–A1253. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Gassner Gregor Josef. 2014. A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Meth. Fluids 76, 1 (2014), 2850. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Gassner Gregor Josef and Beck Andrea D.. 2013. On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dynam. 27, 3-4 (2013), 221237. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Gassner Gregor Josef and Kopriva David A.. 2011. A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Scient. Comput. 33, 5 (2011), 25602579. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Gassner Gregor J. and Winters Andrew R.. 2021. A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: Why? When? What? Where? Front. Phys. 8 (2021), 612. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Gassner Gregor Josef, Winters Andrew Ross, and Kopriva David A.. 2016. Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible euler equations. J. Comput. Phys. 327 (2016), 3966. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Guermond Jean-Luc, Kronbichler Martin, Maier Matthias, Popov Bojan, and Tomas Ignacio. 2022. On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. Comput. Meth. Appl. Mechan. Eng. 389 (022022), 114250. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Harten Amiram, Lax Peter D., and Leer Bram van. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 1 (1983), 3561. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Hesthaven Jan S. and Warburton Tim. 2007. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications(Texts in Applied Mathematics, Vol. 54). Springer Science & Business Media, New York. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Hicken Jason E.. 2020. Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J Sci. Comput. 82, 2 (2020), 50. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Hicken Jason E., Fernández David C. Del Rey, and Zingg David W.. 2016. Multidimensional summation-by-parts operators: General theory and application to simplex elements. SIAM J. Scient. Comput. 38, 4 (2016), A1935–A1958. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Huynh H. T.. 2007. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In 18th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Ismail Farzad and Roe Philip L.. 2009. Affordable, entropy-consistent euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228, 15 (2009), 54105436. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Jameson Antony. 2008. Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J Sci. Comput. 34, 2 (2008), 188208. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Kennedy Christopher A. and Carpenter Mark H.. 1994. Fourth Order 2N-Storage Runge-Kutta Schemes. Technical Memorandum NASA-TM-109112. NASA, NASA Langley Research Center, Hampton, VA.Google ScholarGoogle Scholar
  34. [34] Klose Bjoern F., Jacobs Gustaaf B., and Kopriva David A.. 2020. Assessing standard and kinetic energy conserving volume fluxes in discontinuous Galerkin formulations for marginally resolved Navier-Stokes flows. Comput. Fluids 205 (2020), 104557. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Kopriva David A.. 2006. Metric identities and the discontinuous spectral element method on curvilinear meshes. J Sci. Comput. 26, 3 (2006), 301327. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Kopriva David A.. 2009. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Kopriva David A. and Gassner Gregor Josef. 2010. On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J Sci. Comput. 44, 2 (2010), 136155. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Krais Nico, Beck Andrea, Bolemann Thomas, Frank Hannes, Flad David, Gassner Gregor, Hindenlang Florian, Hoffmann Malte, Kuhn Thomas, Sonntag Matthias, and Munz Claus-Dieter. 2021. FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. Comput. Math. Applic. 81 (2021), 186219. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Kreiss Heinz-Otto and Scherer Godela. 1974. Finite element and finite difference methods for hyperbolic partial differential equations. In Mathematical Aspects of Finite Elements in Partial Differential Equations, Boor Carl de (Ed.). Academic Press, New York, 195212.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] LeFloch Philippe G., Mercier Jean-Marc, and Rohde Christian. 2002. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40, 5 (2002), 19681992. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Maier Matthias and Kronbichler Martin. 2021. Efficient parallel 3D computation of the compressible euler equations with an invariant-domain preserving second-order finite-element scheme. ACM Trans. Parallel Comput. 8, 3 (2021), 130. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Nordström Jan and Björck Martin. 2001. Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38, 3 (2001), 237255. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Nordström Jan, Forsberg Karl, Adamsson Carl, and Eliasson Peter. 2003. Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45, 4 (2003), 453473. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Parsani Matteo, Boukharfane Radouan, Nolasco Irving Reyna, Fernández David C. Del Rey, Zampini Stefano, Hadri Bilel, and Dalcin Lisandro. 2021. High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and flow solver. J. Comput. Phys. 424 (2021), 109844. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Rackauckas Christopher and Nie Qing. 2017. DifferentialEquations.jl—A performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5, 1 (2017), 15. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Ranocha Hendrik. 2017. Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM—Int. J. Geomath. 8, 1 (042017), 85133. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Ranocha Hendrik. 2018. Comparison of some entropy conservative numerical fluxes for the euler equations. J Sci. Comput. 76, 1 (072018), 216242. DOI:arXiv:1701.02264Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Ranocha Hendrik. 2018. Generalised Summation-by-parts Operators and Entropy Stability of Numerical Methods for Hyperbolic Balance Laws. Ph.D. Dissertation. TU Braunschweig.Google ScholarGoogle Scholar
  49. [49] Ranocha Hendrik. 2020. Entropy conserving and kinetic energy preserving numerical methods for the euler equations using summation-by-parts operators. In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 (Lecture Notes in Computational Science and Engineering), Sherwin Spencer J., Moxey David, Peiró Joaquim, Vincent Peter E., and Schwab Christoph (Eds.), Vol. 134. Springer, Cham, 525535. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Ranocha Hendrik. 2021. SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties. J. Open Source Softw. 6, 64 (082021), 3454. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Ranocha Hendrik, Dalcin Lisandro, Parsani Matteo, and Ketcheson David I.. 2021. Optimized Runge-Kutta methods with automatic step size control for compressible computational fluid dynamics. Commun. Appl. Math. Comput. (112021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Ranocha Hendrik and Gassner Gregor J.. 2021. Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. Commun. Appl. Math. Comput. (082021). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Ranocha Hendrik, Mitsotakis Dimitrios, and Ketcheson David I.. 2021. A broad class of conservative numerical methods for dispersive wave equations. Commun. Comput. Phys. 29, 4 (022021), 9791029. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Ranocha Hendrik, Öffner Philipp, and Sonar Thomas. 2016. Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311 (042016), 299328. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Ranocha Hendrik, Schlottke-Lakemper Michael, Chan Jesse, Rueda-Ramírez Andrés M., Winters Andrew R., Hindenlang Florian, and Gassner Gregor J.. 2021. Reproducibility repository for efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Ranocha Hendrik, Schlottke-Lakemper Michael, Winters Andrew Ross, Faulhaber Erik, Chan Jesse, and Gassner Gregor J.. 2022. Adaptive numerical simulations with trixi.jl: A case study of Julia for scientific computing. Proc. JuliaCon Conf. 1, 1 (012022), 77. DOI:arXiv:2108.06476Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Ribeiro Tiago Tamissa. 2020. Final Report on HLST Project OPT-DG2. Final Report. Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching, Germany.Google ScholarGoogle Scholar
  58. [58] Rogowski Marcin, Dalcin Lisandro, Parsani Matteo, and Keyes David E.. 2022. Performance analysis of relaxation Runge-Kutta methods. Int. J. High Perform. Comput. Applic. (052022). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Rojas Diego, Boukharfane Radouan, Dalcin Lisandro, Fernández David C. Del Rey, Ranocha Hendrik, Keyes David E., and Parsani Matteo. 2021. On the robustness and performance of entropy stable discontinuous collocation methods. J. Comput. Phys. 426 (22021), 109891. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Andrés M. Rueda-Ramírez, Hennemann Sebastian, Hindenlang Florian J., Winters Andrew R., and Gassner Gregor J.. 2021. An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: Subcell finite volume shock capturing. J. Comput. Phys. 444 (2021), 110580. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. [61] Schlottke-Lakemper Michael, Winters Andrew R., Ranocha Hendrik, and Gassner Gregor J.. 2021. A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 442 (062021), 110467. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Shima Nao, Kuya Yuichi, Tamaki Yoshiharu, and Kawai Soshi. 2020. Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys. 427 (2020), 110060. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Shu Chi-Wang. 1997. Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Final Report NASA/CR-97-206253. NASA, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA.Google ScholarGoogle Scholar
  64. [64] Sjögreen Björn and Yee H. C.. 2018. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364 (2018), 153185. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Sjögreen Björn, Yee Helen C., and Kotov Dmitry. 2017. Skew-symmetric splitting and stability of high order central schemes. In Journal of Physics: Conference Series, Vol. 837. IOP Publishing, 012019. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Strand Bo. 1994. Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110, 1 (1994), 4767. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [67] Svärd Magnus and Nordström Jan. 2014. Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268 (2014), 1738. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Tadmor Eitan. 1987. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49, 179 (1987), 91103. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Tadmor Eitan. 2003. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003), 451512. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Tang Ping-Tak Peter. 1990. Table-driven implementation of the logarithm function in IEEE floating-point arithmetic. ACM Trans. Math. Softw. 16, 4 (1990), 378400. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. [71] Thomas P. D. and Lombard C. K.. 1979. Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 10 (1979), 10301037. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Toro Eleuterio F.. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Treibig Jan, Hager Georg, and Wellein Gerhard. 2010. LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments. In 39th International Conference on Parallel Processing Workshops. IEEE, 207216. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. [74] Williams Samuel, Waterman Andrew, and Patterson David. 2009. Roofline: An insightful visual performance model for multicore architectures. Commun. ACM 52, 4 (2009), 6576. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Wintermeyer Niklas, Winters Andrew Ross, Gassner Gregor Josef, and Kopriva David A.. 2017. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340 (2017), 200242. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. [76] Winters Andrew Ross and Gassner Gregor Josef. 2015. A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. J. Comput. Phys. 301 (2015), 357376. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. [77] Winters Andrew R., Moura Rodrigo C., Mengaldo Gianmarco, Gassner Gregor J., Walch Stefanie, Peiro Joaquim, and Sherwin Spencer J.. 2018. A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372 (2018), 121. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 49, Issue 4
            December 2023
            226 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/3637452
            • Editors:
            • Zhaojun Bai,
            • Wolfgang Bangerth
            Issue’s Table of Contents

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 15 December 2023
            • Online AM: 27 September 2023
            • Accepted: 18 September 2023
            • Revised: 3 April 2023
            • Received: 20 December 2021
            Published in toms Volume 49, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)232
            • Downloads (Last 6 weeks)37

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Full Text

          View this article in Full Text.

          View Full Text