Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T07:37:33.066Z Has data issue: false hasContentIssue false

Minerals with a palmierite-type structure. Part II. Nomenclature and classification of the palmierite supergroup.

Published online by Cambridge University Press:  24 July 2023

Rafał Juroszek*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-205, Sosnowiec, Poland
Biljana Krüger
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
Hannes Krüger
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
Irina Galuskina
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-205, Sosnowiec, Poland
*
Corresponding author: Rafał Juroszek; Email: rafal.juroszek@us.edu.pl

Abstract

The palmierite supergroup, approved by the IMA-CNMNC, includes five mineral species characterised by the general crystal-chemical formula XIIM1XM22(IVTO4)2 (Z = 3). On the basis of the crystal-chemical arguments and heterovalent isomorphic substitution scheme M++T6+M2++T5+, the palmierite supergroup can be formally divided into two groups: the palmierite group M12+M22+(T6+O4)2, and the tuite group M12+M222+(T5+O4)2. Currently, the palmierite group includes palmierite K2Pb(SO4)2, and kalistrontite K2Sr(SO4)2, whereas the tuite group combines tuite Ca3(PO4)2, mazorite Ba3(PO4)2, and gurimite Ba3(VO4)2. The isostructural supergroup members crystallise in space group R$\bar{3}$m (no. 166). The palmierite-type crystal structure is characterised by a sheet arrangement composed of layers formed by M1O12 and M2O10 polyhedra separated by TO4 tetrahedra perpendicular to the c axis. The abundance of distinct ions, which may be hosted at the M and T sites (M = K, Na, Ca, Sr, Ba, Sr, Pb, Rb, Zn, Tl, Cs, Bi, NH4 and REE; T = Si, P, V, As, S, Se, Mo, Cr and W) implies many possible combinations, resulting in potentially new mineral species. Minerals belonging to the palmierite supergroup are relatively rare and usually form under specific conditions, and their synthetic counterparts play a significant role in various industrial applications.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Africano, F., Van Rompaey, G., Bernard, A. and Le Guern, F. (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth, Planets and Space, 54, 275286.CrossRefGoogle Scholar
Azdouz, M., Manoun, B., Essehli, R., Azrour, M., Bih, L., Benmokhtar, S., Hou, A. and Lazor, P. (2010) Crystal chemistry, Rietveld refinements and Raman spectroscopy studies of the new solid solution series: Ba3-xSrx(VO4)2 (0 ≤ x ≤ 3). Journal of Alloys and Compounds, 498, 4251.CrossRefGoogle Scholar
Bader, E. and Boehm, G. (1966) Kalistrontite in the Stassfurt seam of the Rossleben-Unstrut district. Chemie der Erde, 25, 253257.Google Scholar
Bellanca, A. (1946) La struttura della palmierite. Periodico di Mineralogia, 15, 525.Google Scholar
Bismayer, U., Mihailova, B. and Angel, R. (2017) Ferroelasticity in palmierite-type(1–x)Pb3(PO4)2–xPb3(AsO4)2. Journal of Physics: Condensed Matter, 29, 213001.Google Scholar
Bosi, F., Hatert, F., Pasero, M. and Mills, S. (2023). Newsletter 73. Mineralogical Magazine, 87, 639643, https://doi:10.1180/mgm.2023.44CrossRefGoogle Scholar
Cao, R., Yu, X., Sun, X., Cao, C. and Qiu, J. (2014) Near-infrared emission Ba3(PO4)2:Mn5+ phosphor and potential application in vivo fluorescence imaging. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 128, 671673.CrossRefGoogle ScholarPubMed
Chance, W. and Loye, H.-C. zur. (2013) Synthesis, structure, and optical properties of a series of quaternary oxides, K2Ba(MO4)2 (M = Cr, Mo, W). Solid State Sciences, 28, 9094.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P. and Murashko, M. (2017) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 10091019.CrossRefGoogle Scholar
García-Veigas, J., Rosell, L., Zak, I., Playà, E., Ayora, C. and Starinsky, A. (2009) Evidence of potash salt formation in the Pliocene Sedom Lagoon (Dead Sea Rift, Israel). Chemical Geology, 265, 499511.CrossRefGoogle Scholar
García-Veigas, J., Rosell, L., Ortí, F., Gündoğan, İ. and Helvacı, C. (2011) Mineralogy, diagenesis and hydrochemical evolution in a probertite–glauberite–halite saline lake (Miocene, Emet Basin, Turkey). Chemical Geology, 280, 352364.CrossRefGoogle Scholar
Griniv, S.P., Iorysh, Z.I. and Skul'skaya, L.I. (1986) Kalistrontite from the Stebnik deposit of potassium salts. Mineralogicheskii Sbornik, 40, 7478.Google Scholar
Grzechnik, A. and McMillan, P.F. (1997) High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2. Journal of Solid State Chemistry, 132, 156162.CrossRefGoogle Scholar
Juroszek, R. and Ternes, B. (2022) Crystal chemistry and Raman spectroscopy study of bennesherite, Ba2Fe2+Si2O7, and rare accessory Ba minerals from Caspar quarry, Bellerberg volcano, Germany. Mineralogical Magazine, 86, 777791.CrossRefGoogle Scholar
Juroszek, R., Galuskina, I.O., Krüger, B., Krüger, H., Vapnik, Y., Kahlenberg, V., and Galuskin, E.V. (2023) Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.56Google Scholar
Kemp, S.J., Rushton, J.C., Horstwood, M.S.A. and Nénert, G. (2018) Kalistrontite, its occurrence, structure, genesis, and significance for the evolution of potash deposits in North Yorkshire, U.K. American Mineralogist, 103, 11361150.CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2020) Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10, 407.CrossRefGoogle Scholar
Lacroix, A. (1907) Sur une espèce minérale nouvelle des fumerolles à haute température de la récente éruption du Vésuve. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 144, 13971401.Google Scholar
Lagos, C.C. (1970) Luminescence of Divalent Europium in Ba-Ca, Ba-Sr, and Ca-Sr Orthophosphate and Pyrophosphate Compositions. Journal of The Electrochemical Society, 117, 11891193.CrossRefGoogle Scholar
Maras, A. (1979) Studi sui minerali del Lazio: la kalistrontite di Cesano. Periodico di Mineralogia, 48, 195203.Google Scholar
Mees, F. (1999) Distribution patterns of gypsum and kalistrontite in a dry lake basin of the southwestern Kalahari (Omongwa pan, Namibia). Earth Surface Processes and Landforms, 24, 731744.3.0.CO;2-0>CrossRefGoogle Scholar
Merkle, L., Pinto, A., Verdún, H. and McIntosh, B. (1992) Laser action from Mn5+ in Ba3(VO4)2. Applied Physic Letters, 61, 23862388.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Min, M. (1987) The first discovery of kalistrontite in China and its significance in search for potash deposits. Acta Mineralogica Sinica, 7, 154158.Google Scholar
Moore, P.B. (1973) Bracelets and Pinwheels: A Topological-Geometrical Approach to the Calcium Orthosilicate and Alkali Sulfate Structures. American Mineralogist, 58, 3242.Google Scholar
Morris, M.C., McMurdie, H.F., Evans, E.H., Paretzkin, B., de Groot, J.H., Newberry, R., Hubbard, C.R. and Carmel, S.J. (1977) Standard X-ray Diffraction Powder Patterns: Section 14. Data for 68 substances. Report, Institute for Materials Research, National Bureau of Standards, Washington, DC.CrossRefGoogle Scholar
Mu, C. and He, J. (2012) Synthesis and luminescent properties of Rare Earth (Eu2+, Tb3+) doped Ba3(PO4)2 nanowires by chemical precipitation in nanochannels. Materials Letters, 70, 101104.CrossRefGoogle Scholar
Mugavero, S.J., Bharathy, M., McAlum, J. and zur Loye, H.-C. (2008) Crystal growth of alkaline earth vanadates from hydroxide fluxes. Solid State Sciences, 10, 370376.CrossRefGoogle Scholar
Murayama, J.K., Nakai, S., Kato, M. and Kumazawa, M. (1986) A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Physics of the Earth and Planetary Interiors, 44, 293303.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Skelton, R. and Walker, A.M. (2017) Ab initio crystal structure and elasticity of tuite, γ-Ca3(PO4)2, with implications for trace element partitioning in the lower mantle. Contributions to Mineralogy and Petrology, 172, 87.CrossRefGoogle Scholar
Smith, A.L., de Zoete, N., Rutten, M., van Eijck, L., Griveau, J.-C. and Colineau, E. (2020) Report of the double-molybdate phase Cs2Ba(MoO4)2 with a palmierite structure and its thermodynamic characterization. Inorganic Chemistry, 59, 1316213173.CrossRefGoogle Scholar
Sugiyama, K. and Tokonami, M. (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: A host to accommodate large lithophile elements in the Earth's mantle. Physics and Chemistry of Minerals, 15, 125130.CrossRefGoogle Scholar
Sugiyama, K. and Tokonami, M. (1990) The crystal structure refinements of the strontium and barium orthophosphates. Mineralogical Journal, 15, 141146.CrossRefGoogle Scholar
Süsse, P. and Buerger, M.J. (1970) The structure of Ba3(VO4)2. Zeitschrift für Kristallographie – Crystalline Materials, 131, 161174.CrossRefGoogle Scholar
Tāle, I., Kūlis, P. and Kronghauz, V. (1979) Recombination luminescence mechanisms in Ba3(PO4)2. Journal of Luminescence, 20, 343347.CrossRefGoogle Scholar
Thompson, R.M., Xie, X., Zhai, S., Downs, R.T. and Yang, H. (2013) A comparison of the Ca3(PO4)2 and CaSiO3 systems, with a new structure refinement of tuite synthesized at 15 GPa and 1300 °C. American Mineralogist, 98, 15851592.CrossRefGoogle Scholar
Tissot, R.G., Rodriguez, M.A., Sipola, D.L. and Voigt, J.A. (2001) X-ray powder diffraction study of synthetic Palmierite, K2Pb(SO4)2. Powder Diffraction, 16, 9297.CrossRefGoogle Scholar
Tong, M., Liang, Y., Yan, P., Wang, Q. and Li, G. (2015) Synthesis and luminescence properties of a bluish-green emitting phosphor Ba3(PO4)2: Ce3+, Tb3+. Optics & Laser Technology, 75, 221228.CrossRefGoogle Scholar
Tsyrenova, G.D., Pavlova, E.Т., Solodovnikov, S.F., Popova, N.N., Kardash, T.Y., Stefanovich, S.Y., Gudkova, I.А., Solodovnikova, Z.A. and Lazoryak, B.I. (2016) New ferroelastic K2Sr(MoO4)2: Synthesis, phase transitions, crystal and domain structures, ionic conductivity. Journal of Solid State Chemistry, 237, 6471.CrossRefGoogle Scholar
Von Schwarz, H. (1966) I. Sulfate. Zeitschrift für Anorganische und Allgemeine Chemie, 344, 4155.Google Scholar
Voronova, M.L. (1962) Kalistrontite, a new mineral of potassium and strontium sulfate. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 91, 712717.Google Scholar
Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J. and Fei, Y. (2002) Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochimica et Cosmochimica Acta, 66, 24392444.CrossRefGoogle Scholar
Xie, X., Minitti, M.E., Chen, M., Mao, H.-K., Wang, D., Shu, J. and Fei, Y. (2004) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. European Journal of Mineralogy, 15, 10011005.CrossRefGoogle Scholar
Zachariasen, W. (1948) The crystal structure of the normal orthophosphates of barium and strontium. Acta Crystallographica, 1, 727730.CrossRefGoogle Scholar
Zambonini, F. (1921) Sur la palmiérite du Vésuve et les mineraux qui l'accompagnent. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 172, 14191422.Google Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Y.S. and Pushcharovsky, D.Y. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.CrossRefGoogle Scholar
Zhai, S., Yamazaki, D., Xue, W., Ye, L., Xu, C., Shan, S., Ito, E., Yoneda, A., Yoshino, T., Guo, X., Shimojuku, A., Tsujino, N. and Funakoshi, K.-I. (2013) P-V-T relations of γ-Ca3(PO4)2 tuite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus. American Mineralogist, 98, 18111816.CrossRefGoogle Scholar