Skip to main content
Log in

Effect of the MgO/SiO2 ratio on MgO–silica binders solidifying MSWI fly ash

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

To improve the effect of MgO–SiO2 binders solidifying municipal solid waste incineration fly ash (MSWI FA), MSWI FA solidified bodies with five MgO/SiO2 ratios (0.41 ~ 3.77) were investigated. The leaching behavior of solidified bodies was evaluated by leaching toxicity tests and pH-dependent experiments. In addition, hydration products in solidified bodies were analyzed by thermodynamic modeling and microstructure characterizations. The results showed that the variation in the MgO/SiO2 ratio had a significant effect on the leaching toxicity of the solidified bodies, because it affected the leachate pH and the composition of the hydration products of the solidified bodies. The acid and alkali resistance of the MSWI FA was enhanced through solidification with MgO–SiO2 binders. MgO can improve the alkalinity of the solidified bodies and facilitate the chemical precipitation of heavy metals. Moreover, silica fume, an industrial waste, can serve as a cost-effective measure. Overall, MgO–SiO2 binders demonstrated great potential as promising candidates for encapsulating MSWI FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Original data will be available from the corresponding author on reasonable request.

References

  1. Shao, Y., Shao, Y., and Zhang, W. 2022. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization. Waste Management 143: 54–60. https://doi.org/10.1016/j.wasman.2022.02.021.

    Article  CAS  Google Scholar 

  2. Luo, H., Cheng, Y., He, D., et al. 2019. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the Total Environment 668: 90–103. https://doi.org/10.1016/j.scitotenv.2019.03.004.

    Article  CAS  Google Scholar 

  3. Tan, J., Dan, H., and Li, J. 2022. Use of municipal waste incineration fly ashes (MSWI FA) in metakaolin-based geopolymer. Environmental Science and Pollution Research 29 (53): 80727–80738. https://doi.org/10.1007/s11356-022-21580-5.

    Article  CAS  Google Scholar 

  4. Fan, C., Wang, B., Ai, H., et al. 2021. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production 319: 128790. https://doi.org/10.1016/j.jclepro.2021.128790.

    Article  CAS  Google Scholar 

  5. Ren, J., Hu, L., Dong, Z., et al. 2021. Effect of silica fume on the mechanical property and hydration characteristic of alkali-activated municipal solid waste incinerator (MSWI) fly ash. Journal of Cleaner Production 295: 126317. https://doi.org/10.1016/j.jclepro.2021.126317.

    Article  CAS  Google Scholar 

  6. Zhang, X., Wang, B., Chang, J., et al. 2022. Effect of zeolite contents on mineral evolution and heavy metal solidification in alkali-activated MSWI fly ash specimens. Construction and Building Materials 345: 128309. https://doi.org/10.1016/j.conbuildmat.2022.128309.

    Article  CAS  Google Scholar 

  7. Jin, M., Zheng, Z., Sun, Y., et al. 2016. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. Journal of Non-Crystalline Solids 450: 116–122. https://doi.org/10.1016/j.jnoncrysol.2016.07.036.

    Article  CAS  Google Scholar 

  8. Long, L., Zhao, Y., Lv, G., et al. 2023. Improving stabilization/solidification of MSWI fly ash with coal gangue based geopolymer via increasing active calcium content. Science of the Total Environment 854: 158594. https://doi.org/10.1016/j.scitotenv.2022.158594.

    Article  CAS  Google Scholar 

  9. Liu, J., Xie, G., Wang, Z., et al. 2023. Synthesis of geopolymer using municipal solid waste incineration fly ash and steel slag: Hydration properties and immobilization of heavy metals. Journal of Environmental Management 341: 118053. https://doi.org/10.1016/j.jenvman.2023.118053.

    Article  CAS  Google Scholar 

  10. Sun, C., Ge, W., Zhang, Y., et al. 2023. Designing low-carbon cement-free binders for stabilization/solidification of MSWI fly ash. Journal of Environmental Management 339: 117938. https://doi.org/10.1016/j.jenvman.2023.117938.

    Article  CAS  Google Scholar 

  11. Duan, Y., Zheng, L., Zhao, Y., et al. 2023. Improving immobilization efficiency and mechanism analysis of sodium hexametaphosphate on MgO-based cementitious material solidified MSWI FA. Journal of Material Cycles and Waste Management. https://doi.org/10.1007/s10163-023-01608-9.

    Article  Google Scholar 

  12. HJ/T 300-2007. Solid waste-extraction procedure for leaching toxicity-Acetic acid buffer solution method. Beijing, China: Ministry of Environmental Protection. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200704/t20070418_102860.shtml. Accessed 13 Apr 2007.

  13. Wang, B., and Fan, C. 2020. Hydration behavior and immobilization mechanism of MgO-SiO2-H2O cementitious system blended with MSWI fly ash. Chemosphere 250: 126269. https://doi.org/10.1016/j.chemosphere.2020.126269.

    Article  CAS  Google Scholar 

  14. Bhagath Singh, G.V.P., Sonat, C., Yang, E.H., et al. 2020. Performance of MgO and MgO-SiO2 systems containing seeds under different curing conditions. Cement and Concrete Composites 108: 103543. https://doi.org/10.1016/j.cemconcomp.2020.103543.

    Article  CAS  Google Scholar 

  15. Ruan, S., and Unluer, C. 2016. Comparative life cycle assessment of reactive MgO and Portland cement production. Journal of Cleaner Production 137: 258–273. https://doi.org/10.1016/j.jclepro.2016.07.071.

    Article  CAS  Google Scholar 

  16. Mehta, A., and Ashish, D.K. 2020. Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering 29: 100888. https://doi.org/10.1016/j.jobe.2019.100888.

    Article  Google Scholar 

  17. Sonat, C., and Unluer, C. 2019. Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash. Journal of Cleaner Production 211: 787–803. https://doi.org/10.1016/j.jclepro.2018.11.246.

    Article  CAS  Google Scholar 

  18. Li, Z., Xu, Y., Liu, H., et al. 2019. Effect of the MgO/Silica fume ratio on the reaction process of the MgO-SiO2-H2O System. Materials 12 (1): 80. https://doi.org/10.3390/ma12010080.

    Article  CAS  Google Scholar 

  19. DL/T 5296-2013. Technical Specification of Magnesium Oxide Expansive for Use in Hydraulic Concrete. Beijing, China: China Electric Power Press. https://www.cnnbzj.com/cn/bzlxjs/Detail_f0bbc7ce142f4887abcc46cedf4ba703.htmlAccessed 28 Nov 2013.

  20. GB 16889-2008. Standard for pollution control on the landfill site of municipal solid waste. Beijing, China: Ministry of Environmental Protection. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/200804/t20080414_121136.shtml. Accessed 2 Apr 2008.

  21. Tran, H.M., and Scott, A. 2017. Strength and workability of magnesium silicate hydrate binder systems. Construction and Building Materials 131: 526–535. https://doi.org/10.1016/j.conbuildmat.2016.11.109.

    Article  CAS  Google Scholar 

  22. Zhang, T., Vandeperre, L.J., and Cheeseman, C.R. 2014. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cement and Concrete Research 65: 8–14. https://doi.org/10.1016/j.cemconres.2014.07.001.

    Article  CAS  Google Scholar 

  23. Walling, S.A., Kinoshita, H., Bernal, S.A., et al. 2015. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge. Dalton Transactions 44 (17): 8126–8137. https://doi.org/10.1039/c5dt00877h.

    Article  CAS  Google Scholar 

  24. Sonat, C., Dung, N.T., and Unluer, C. 2017. Performance and microstructural development of MgO-SiO2 binders under different curing conditions. Construction and Building Materials 154: 945–955. https://doi.org/10.1016/j.conbuildmat.2017.08.020.

    Article  CAS  Google Scholar 

  25. Zhao, S., Muhammad, F., Yu, L., et al. 2019. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials. Environmental Science and Pollution Research 26 (25): 25609–25620. https://doi.org/10.1007/s11356-019-05832-5.

    Article  CAS  Google Scholar 

  26. Cheng, F., Hu, Y., Song, Q., et al. 2022. Effect of curing temperature on the properties of a MgO-SiO2-H2O system prepared using dead-burned MgO. Materials 15 (17): 6065. https://doi.org/10.3390/ma15176065.

    Article  CAS  Google Scholar 

  27. Qiu, Q.L., Jiang, X.G., Chen, Z.L., et al. 2018. Leaching of heavy metals from MSWI fly ash: experiments vs. simulation. Archives of Environmental Protection 44 (2): 55–61. https://doi.org/10.24425/119691.

    Article  CAS  Google Scholar 

  28. Pereira, C.F., Rodrı́guez-Piñero, M., and Vale, J. 2001. Solidification/stabilization of electric arc furnace dust using coal fly ash: Analysis of the stabilization process. Journal of Hazardous Materials 82 (2): 183–195. https://doi.org/10.1016/S0304-3894(00)00359-9.

    Article  CAS  Google Scholar 

  29. Kulik, D.A., Winnefeld, F., Kulik, A., et al. 2021. CemGEMS–an easy-to-use web application for thermodynamic modeling of cementitious materials. RILEM Technical Letters 6: 36–52. https://doi.org/10.21809/rilemtechlett.2021.140.

    Article  Google Scholar 

  30. Jin, F., and Al-Tabbaa, A. 2014. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere 117: 285–294. https://doi.org/10.1016/j.chemosphere.2014.07.027.

    Article  CAS  Google Scholar 

  31. Huang, W., and Huang, H. 2008. Using fume silica as heavy metals’ stabilizer for high alkali and porous MSWI baghouse ash. Journal of Hazardous Materials 152 (1): 176–182. https://doi.org/10.1016/j.jhazmat.2007.06.083.

    Article  CAS  Google Scholar 

  32. Shen, Z., Hou, D., Xu, W., et al. 2018. Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. Science of the Total Environment 643: 1571–1578. https://doi.org/10.1016/j.scitotenv.2018.06.321.

    Article  CAS  Google Scholar 

  33. Qing, Z., Guijian, L., Shuchuan, P., et al. 2023. The simultaneous removal of cadmium (II) and lead (II) from wastewater with the application of green synthesized magnesium silicate hydrate. Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.1074687.

    Article  Google Scholar 

  34. Bernard, E., Lothenbach, B., Cau-Dit-Coumes, C., et al. 2018. Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H). Applied Geochemistry 89: 229–242. https://doi.org/10.1016/j.apgeochem.2017.12.005.

    Article  CAS  Google Scholar 

  35. Fan, C., Wang, B., Qi, Y., et al. 2021. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Management 131: 277–285. https://doi.org/10.1016/j.wasman.2021.06.011.

    Article  CAS  Google Scholar 

  36. Chen, J., Li, T., Li, X., et al. 2016. Some new perspective on the reaction mechanism of MgO-SiO2-H2O system. International Journal of Applied Ceramic Technology 13 (6): 1164–1172. https://doi.org/10.1111/ijac.12607.

    Article  CAS  Google Scholar 

  37. Jia, Y., Wang, B., Wu, Z., et al. 2017. Effect of CaO on the reaction process of MgO-SiO2-H2O cement pastes. Materials Letters 192: 48–51. https://doi.org/10.1016/j.matlet.2017.01.072.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the key program of the National Natural Science Foundation of China (Grant No. 52236008).

Author information

Authors and Affiliations

Authors

Contributions

YD: experiments, analysis, and writing original draft; XL: review and editing; ZK: review and editing; XJ: supervision and funding acquisition.

Corresponding author

Correspondence to Xuguang Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 896 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Liu, X., Khalid, Z. et al. Effect of the MgO/SiO2 ratio on MgO–silica binders solidifying MSWI fly ash. Waste Dispos. Sustain. Energy 5, 551–558 (2023). https://doi.org/10.1007/s42768-023-00164-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-023-00164-0

Keywords

Navigation