Skip to main content
Log in

Scientific School of Nonequilibrium Aeromechanics at St. Petersburg State University

  • TO THE TERCENTENARY OF ST. PETERSBURG UNIVERSITY
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The review describes the creation and development of the scientific school of Sergei Vasilyevich Vallander at the Leningrad (now St. Petersburg) State University. We discuss the achievements of the scientific school in the development of methods of the kinetic theory of gases for the simulation of nonequilibrium flows, the construction of rigorous self-consistent mathematical models of varying complexity for strong and weak deviations from equilibrium, and the application of the developed models in solving modern problems of aerodynamics. Particular attention is paid to the study of nonequilibrium kinetics and transport processes in carbon dioxide, identifying the key relaxation mechanisms of polyatomic molecules, the development of physically reasonable reduced hybrid models, and the optimization of numerical simulation of flows using modern machine-learning methods. We discuss the problems of correctly accounting for electronic excitation in modeling the kinetics and transport processes, models of equilibrium gas flows with multiple ionization, and the peculiarities of simulating bulk viscosity in polyatomic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Kustova and E. A. Nagnibeda, “On the 90th anniversary of the department of hydroaeromechanics of St. Petersburg State University,” Vestn. S.-Peterb. Univ., Mat., Mekh., Astron. 6(64), 702–706 (2019).

    Google Scholar 

  2. E. A. Nagnibeda and M. A. Rydalevskaya, “Sergei Vasil’evich Vallander. On the 100th anniversary of his birth,” Vestn. S.-Peterb. Univ., Mat., Mekh., Astron. 4(62), 345–354 (2017).

    Google Scholar 

  3. Mathematical Petersburg. History, Science, Sights. Reference Guide, Ed. by G. I. Sinkevich and A. I. Nazarov (Obraz. Proekty, St. Petersburg, 2018) [in Russian].

    Google Scholar 

  4. V. V. Lunev, Hypersonic Aerodynamics (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  5. G. G. Chernyi, Gas Dynamics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  6. S. V. Vallander, “Numerical determination of aerodynamic characteristics of some wings of finite span,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 19, 106–112 (1959).

  7. S. V. Vallander, “Calculation of the flow around the lattice of profiles,” Dokl. Akad. Nauk SSSR 82, 345–348 (1952).

    Google Scholar 

  8. S. V. Vallander, “Fluid flow in the turbine,” Dokl. Akad. Nauk SSSR 84, 673–676 (1952).

    Google Scholar 

  9. S. V. Vallander, “On the application of the singularity method in the calculation of fluid flows in radial-axial turbines,” Dokl. Akad. Nauk SSSR 123, 413–416 (1958).

    Google Scholar 

  10. S. V. Vallander, “New kinetic equations in the theory of monoatomic gases,” Dokl. Akad. Nauk SSSR 131, 58–60 (1960).

    Google Scholar 

  11. S. V. Vallander and A. V. Belova, “Integral kinetic equations for a mixture of gases with internal degrees of freedom,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 7, 81–86 (1961).

  12. S. V. Vallander, “Equations and formulation of problems in the aerodynamics of rarefied gases,” in Aerodynamics of Rarefied Gases (Leningr. Gos. Univ., Leningrad, 1963), Vol. 1, pp. 7–37 [in Russian].

    Google Scholar 

  13. D. Enskog, “Über die grundgleichungen in der kinetischen theorie der flussigkeiten und der gase,” Ark. Mat., Astron. Fys. 21A (13) (1928).

  14. H. Grad, “Principles of the kinetic theory of gases,” in Thermodynamik der Gase / Thermodynamics of Gases (Springer-Verlag, Berlin, 1958), pp. 205–294.

    Google Scholar 

  15. S. V. Vallander and E. A. Nagnibeda, “General statement of the problem of describing relaxation processes in gases with internal degrees of freedom,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 13, 77–91 (1963).

  16. S. V. Vallander, I. A. Egorova, and M. A. Rydalevskaya, “Equilibrium distribution as a solution of kinetic equations for a mixture of gases with internal degrees of freedom and chemical reactions,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron. 7, 57–70 (1964).

    Google Scholar 

  17. S. V. Vallander, E. A. Nagnibeda, and M. A. Rydalevskaya, Some Questions of the Kinetic Theory of a Chemically Reacting Mixture of Gases (Leningr. Gos. Univ., Leningrad, 1977; U.S. Air Force), FASTC-ID (RS) TO-0608-93.

  18. B. V. Filippov, “Kinetic equation of the adsorption monolayer,” Sov. Phys. Dokl. 8, 468 (1963).

    Google Scholar 

  19. R. G. Barantsev, “Some problems of gas-solid surface interaction,” Prog. Aerospace Sci. 13, 1–80 (1972).

    Article  Google Scholar 

  20. V. A. Laptev and E. A. Nagnibeda, “Conditions for macroparameters at the boundary of the boundary layer in an oscillationally nonequilibrium gas,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 19, 78–84 (1979).

  21. E. V. Alekseeva, R. G. Barantsev, and A. V. Shatrov, “Combination of temperature asymptotics in the boundary layer,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 8, 96–99 (1996).

  22. R. N. Miroshin, “On the ray model of the interaction of rarefied gas atoms with the surface,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 74–79 (1997).

  23. O. A. Aksenova and I. A. Khalidov, Surface Roughness in Rarefied Gas Aerodynamics: Fractal and Statistical Models (VVM, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  24. L. A. Shakurova and E. V. Kustova, “Boundary conditions for fluid-dynamic parameters of a single-component gas flow with vibrational deactivation on a solid wall,” Vestn. St. Petersburg Univ.: Math. 55, 249–256 (2022). https://doi.org/10.1134/S1063454122020121

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Shakurova and E. Kustova, “State-specific boundary conditions for nonequilibrium gas flows in slip regime,” Phys. Rev. E 105, 034126 (2022). https://doi.org/10.1103/PhysRevE.105.034126

    Article  MathSciNet  Google Scholar 

  26. B. V. Filippov and V. B. Khristinich, “Kinetic equations of rarefied gas dynamics in divergent form,” in Physical Mechanics, Vol. 4: Dynamic Processes in Gases and Solids (Leningr. Gos. Univ., Leningrad, 1980), pp. 7–18 [in Russian].

  27. B. V. Filippov, “Nonequilibrium processes in the mechanics of inhomogeneous media,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 127–131 (1998).

  28. E. A. Nagnibeda and E. V. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (S.-Peterb. Gos. Univ., St. Petersburg, 2003; Springer-Verlag, Berlin, 2009).

  29. E. V. Kustova and M. A. Mekhonoshina, Basic Mathematical Transformations in the Kinetic Theory of Gases (S.‑Peterb. Gos. Univ., St. Petersburg, 2017) [in Russian].

    Google Scholar 

  30. E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (Springer-Verlag, Berlin, 2009).

    Book  MATH  Google Scholar 

  31. E. V. Kustova, E. A. Nagnibeda, Y. D. Shevelev, and N. G. Syzranova, “Comparison of different models for non-equilibrium CO2 flows in a shock layer near a blunt body,” Shock Waves 21, 273–287 (2011). https://doi.org/10.1007/s00193-011-0324-0

    Article  Google Scholar 

  32. Y. D. Shevelev, N. G. Syzranova, E. V. Kustova, and E. A. Nagnibeda, “Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere,” Math. Models Comput. Simul. 3, 205–224 (2011). https://doi.org/10.1134/S2070048211020104

    Article  MATH  Google Scholar 

  33. Yu. D. Shevelev, N. G. Syzranova, E. A. Nagnibeda, and E. V. Kustova, “Bulk-viscosity effect on CO2 hypersonic flow around blunt bodies,” Dokl. Phys. 60, 207–209 (2015). https://doi.org/10.1134/S1028335815050031

    Article  Google Scholar 

  34. G. V. Shoev, E. A. Bondar, G. P. Oblapenko, and E. V. Kustova, “Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent,” Thermophys. Aeromech. 23, 151–163 (2016). https://doi.org/10.1134/S0869864316020013

    Article  Google Scholar 

  35. A. N. Molchanova, E. V. Kustova, A. V. Kashkovsky, and Ye. A. Bondar, “Probabilities for DSMC modelling of CO2 vibrational kinetics,” AIP Conf. Proc. 1786, 050019 (2016). https://doi.org/10.1063/1.4967569

    Article  Google Scholar 

  36. O. V. Kunova, G. V. Shoev, and A. N. Kudryavtsev, “Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software,” Thermophys. Aeromech. 24, 7–17 (2017). https://doi.org/10.1134/S0869864317010024

    Article  Google Scholar 

  37. G. Shoev, G. Oblapenko, O. Kunova, M. Mekhonoshina, and E. Kustova, “Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows,” Acta Astronaut. 144, 147–159 (2018). https://doi.org/10.1016/j.actaastro.2017.12.023

    Article  Google Scholar 

  38. A. Kosareva and G. Shoev, “Numerical simulation of a CO2, CO, O2, O, C-mixture: Validation through comparisons with results obtained in a ground-based facility and thermochemical effects,” Acta Astronaut. 160, 461–478 (2019). https://doi.org/10.1016/j.actaastro.2019.01.029

    Article  Google Scholar 

  39. Yu. Gorbachev, O. Kunova, and G. Shoev, “A non-equilibrium dissociation and vibrational relaxation model for computational fluid dynamics simulations of flows with shock waves,” Phys. Fluids 33, 126105 (2021). https://doi.org/10.1063/5.0062628

    Article  Google Scholar 

  40. E. A. Nagnibeda and E. V. Kustova, Transport Properties of N 2 and CO 2 for Nonequilibrium Flows, Report No. ESA STR-247 (European Space Agency, Noordwijk, 2005).

  41. E. A. Nagnibeda and E. V. Kustova, Transport Properties of Nonequilibrium Gas Flows, Report No. ESA STR-248 (European Space Agency, Noordwijk, 2005).

  42. E. V. Kustova, E. A. Nagnibeda, and D. Giordano, Mutual Influence Between Flow Compressibility and Chemical-Reaction Rates in Gas Mixtures, Report No. ESA STR-255 (European Space Agency, Noordwijk, 2008).

  43. E. Kustova and D. Giordano, “Cross-coupling effects in chemically non-equilibrium viscous compressible flows,” Chem. Phys. 379, 83–91 (2011). https://doi.org/10.1016/j.chemphys.2010.11.009

    Article  Google Scholar 

  44. A. Chikhaoui, J. P. Dudon, E. V. Kustova, and E. A. Nagnibeda, “Transport properties in reacting mixture of polyatomic gases,” Phys. A (Amsterdam, Neth.) 247, 526–552 (1997). https://doi.org/10.1016/S0378-4371(97)00392-0

  45. A. Chikhaoui and E. V. Kustova, “Effect of strong excitation of the CO2 asymmetric mode on transport properties,” Chem. Phys. 216, 297–315 (1997). https://doi.org/10.1016/S0301-0104(97)00017-7

    Article  Google Scholar 

  46. E. V. Kustova, E. A. Nagnibeda, and A. Chauvin, “State-to-state nonequilibrium reaction rates,” Chem. Phys. 248, 221–232 (1999). https://doi.org/10.1016/S0301-0104(99)00213-X

    Article  Google Scholar 

  47. M. Capitelli, G. Colonna, D. Giordano, E. V. Kustova, E. A. Nagnibeda, M. Tuttafesta, and D. Bruno, “The influence of state-to-state kinetics on transport properties in a nozzle flow,” Mat. Model. 11 (3), 45–59 (1999).

    Google Scholar 

  48. I. Armenise, M. Capitelli, E. V. Kustova, and E. A. Nagnibeda, “Influence of nonequilibrium kinetics on heat transfer and diffusion near re-entering body,” J. Thermophys. Heat Transfer 13, 210–218 (1999). https://doi.org/10.2514/2.6438

    Article  MATH  Google Scholar 

  49. A. Chikhaoui, J. P. Dudon, S. Genieys, E. V. Kustova, and E. A. Nagnibeda, “Multitemperature kinetic model for heat transfer in reacting gas mixture flows,” Phys. Fluids 12, 220–232 (2000). https://doi.org/10.1063/1.870302

    Article  MATH  Google Scholar 

  50. A. Aliat, A. Chikhaoui, and E. V. Kustova, “Nonequilibrium kinetics of a radiative CO flow behind a shock wave,” Phys. Rev. E 68, 056306 (2003). https://doi.org/10.1103/PhysRevE.68.056306

    Article  Google Scholar 

  51. A. Aliat, E. V. Kustova, and A. Chikhaoui, “State-to-state reaction rates in gases with vibration-electronic-dissociation coupling: The influence on a radiative shock heated CO flow,” Chem. Phys. 314, 37–47 (2005). https://doi.org/10.1016/j.chemphys.2005.01.016

    Article  Google Scholar 

  52. A. Orsini, P. Rini, V. Taviani, D. Fletcher, E. V. Kustova, and E. A. Nagnibeda, “State-to-state simulation of nonequilibrium nitrogen stagnation line flows: Fluid dynamics and vibrational kinetics,” J. Thermophys. Heat Transfer 22, 390–398 (2008). https://doi.org/10.2514/1.34545

    Article  Google Scholar 

  53. I. Armenise and E. Kustova, “State-to-state models for CO2 molecules: From the theory to an application to hypersonic boundary layers,” Chem. Phys. 415, 269–281 (2013). https://doi.org/10.1016/j.chemphys.2013.01.034

    Article  Google Scholar 

  54. I. Armenise, P. Reynier, and E. Kustova, “Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics,” J. Thermophys. Heat Transfer 30, 705–720 (2016). https://doi.org/10.2514/1.T4708

    Article  Google Scholar 

  55. I. Armenise and E. Kustova, “Mechanisms of coupled vibrational relaxation and dissociation in carbon dioxide,” J. Phys. Chem. A 122, 5107–5120 (2018). https://doi.org/10.1021/acs.jpca.8b03266

    Article  Google Scholar 

  56. I. Armenise and E. Kustova, “Effect of asymmetric mode on CO2 state-to-state vibrational-chemical kinetics,” J. Phys. Chem. A 122, 8709–8721 (2018). https://doi.org/10.1021/acs.jpca.8b07523

    Article  Google Scholar 

  57. E. Kustova, A. Savelev, and I. Armenise, “State-resolved dissociation and exchange reactions in CO2 flows,” J. Phys. Chem. A 123, 10529–10542 (2019). https://doi.org/10.1021/acs.jpca.9b08578

    Article  Google Scholar 

  58. L. D. Pietanza, O. Guaitella, V. Aquilanti, I. Armenise, A. Bogaerts, M. Capitelli, G. Colonna, V. Guerra, R. Engeln, E. Kustova, A. Lombardi, F. Palazzetti, and T. Silva, “Advances in non-equilibrium CO2 plasma kinetics: A theoretical and experimental review,” Eur. Phys. J. D 75, 237 (2021). https://doi.org/10.1140/epjd/s10053-021-00226-0

    Article  Google Scholar 

  59. E. Josyula, E. V. Kustova, and P. Vedula, “Self-diffusion of vibrational states: Impact on the heat transfer in hypersonic flows,” AIP Conf. Proc. 1628, 1253–1260 (2014). https://doi.org/10.1063/1.4902735

    Article  Google Scholar 

  60. E. Josyula, E. Kustova, P. Vedula, and J. M. Burt, “Influence of state-to-state transport coefficients on surface heat transfer in hypersonic flows,” in Proc. 52nd Aerospace Sciences Meeting, National Harbor, Md., Jan. 13–17, 2014 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2014), paper no. AIAA 2014-0864. https://doi.org/10.2514/6.2014-0864

  61. E. Josyula, J. M. Burt, E. V. Kustova, P. Vedula, and M. Mekhonoshina, “State-to-state kinetic modeling of dissociating and radiating hypersonic flows,” in Proc. 53rd Aerospace Sciences Meeting, Kissimmee, Florida, Jan. 5–9, 2015 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2015), paper no. AIAA 2015-0475. https://doi.org/10.2514/6.2015-0475

  62. S. F. Gimelshein, I. J. Wysong, A. J. Fangman, D. A. Andrienko, O. V. Kunova, E. V. Kustova, C. Garbacz, M. Fossati, and K. M. Hanquist, “Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures,” J. Thermophys. Heat Transfer 36, 399–418 (2022). https://doi.org/10.2514/1.T6258

    Article  Google Scholar 

  63. S. F. Gimelshein, I. J. Wysong, A. J. Fangman, D. A. Andrienko, O. V. Kunova, E. V. Kustova, F. Morgado,   C. Garbacz, M. Fossati, and K. M. Hanquist, “Kinetic and continuum modeling of high-temperature air relaxation,” J. Thermophys. Heat Transfer 36, 870–893 (2022). https://doi.org/10.2514/1.T6462

    Article  Google Scholar 

  64. E. Kustova and G. M. Kremer, “Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach,” Chem. Phys. 445, 82–94 (2014). https://doi.org/10.1016/j.chemphys.2014.10.019

    Article  Google Scholar 

  65. E. Kustova and G. M. Kremer, “Effect of molecular diameters on state-to-state transport properties: The shear viscosity coefficient,” Chem. Phys. Lett. 636, 84–89 (2015). https://doi.org/10.1016/j.cplett.2015.07.012

    Article  Google Scholar 

  66. G. M. Kremer, O. Kunova, E. Kustova, and G. Oblapenko, “The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases,” Phys. A: Stat. Mech. Its Appl. 490, 92–113 (2018). https://doi.org/10.1016/j.physa.2017.08.019

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Camridge, 1991; Inostrannaya Literatura, Moscow, 1960).

  68. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  69. J. Fertsiger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).

  70. C. S. Wang-Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Gases, Research Report No. CM-681 (Univ. of Michigan, 1951).

  71. E. V. Kustova and E. A. Nagnibeda, “Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium,” Chem. Phys. 233, 57–75 (1998). https://doi.org/10.1016/S0301-0104(98)00092-5

    Article  Google Scholar 

  72. E. V. Kustova, “On the simplified state-to-state transport coefficients,” Chem. Phys. 270, 177–195 (2001). https://doi.org/10.1016/S0301-0104(01)00352-4

    Article  Google Scholar 

  73. E. V. Kustova, E. A. Nagnibeda, T. Yu. Alexandrova, and A. Chikhaoui, “On the non-equilibrium kinetics and heat transfer in nozzle flows,” Chem. Phys. 276, 139–154 (2002). https://doi.org/10.1016/S0301-0104(01)00578-X

    Article  Google Scholar 

  74. E. V. Kustova, E. A. Nagnibeda, T. Yu. Alexandrova, and A. Chikhaoui, “Non-equilibrium dissociation rates in expanding flows,” Chem. Phys. Lett. 377, 663–671 (2003). https://doi.org/10.1016/S0009-2614(03)01213-2

    Article  Google Scholar 

  75. E. V. Kustova and E. A. Nagnibeda, “Strong nonequilibrium effects on specific heats and thermal conductivity of diatomic gas,” Chem. Phys. 208, 313–329 (1996). https://doi.org/10.1016/0301-0104(96)00106-1

    Article  Google Scholar 

  76. A. Chikhaoui, E. A. Nagnibeda, E. V. Kustova, and T. Yu. Alexandrova, “Modelling of dissociation-recombination in nozzles using strongly non-equilibrium vibrational distributions,” Chem. Phys. 263, 111–126 (2001). https://doi.org/10.1016/S0301-0104(00)00345-1

    Article  Google Scholar 

  77. E. Kustova and G. Oblapenko, “Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows,” Phys. Fluids 27, 016102 (2015). https://doi.org/10.1063/1.4906317

    Article  MATH  Google Scholar 

  78. E. Kustova and G. Oblapenko, “Mutual effect of vibrational relaxation and chemical reactions in viscous multitemperature flows,” Phys. Rev. E 93, 033127 (2016). https://doi.org/10.1103/PhysRevE.93.033127

    Article  MathSciNet  Google Scholar 

  79. E. Kustova, E. Nagnibeda, G. Oblapenko, A. Savelev, and I. Sharafutdinov, “Advanced models for vibrational–chemical coupling in multi-temperature flows,” Chem. Phys. 464, 1–13 (2016). https://doi.org/10.1016/j.chemphys.2015.10.017

    Article  Google Scholar 

  80. E. V. Kustova and L. Puzyreva, “Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation,” Phys. Rev. E 80, 046407 (2009). https://doi.org/10.1103/PhysRevE.80.046407

    Article  Google Scholar 

  81. V. A. Istomin and E. V. Kustova, “Transfer coefficients of atomic nitrogen and oxygen taking into account electronic excitation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 77–86 (2010).

  82. V. A. Istomin and E. V. Kustova, “Transfer coefficients in five-component ionized mixtures of nitrogen and oxygen taking into account electronic excitation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 109–116 (2012).

  83. V. A. Istomin, E. V. Kustova, and M. A. Mekhonoshina, “Eucken correction in high-temperature gases with electronic excitation,” J. Chem. Phys. 140, 184311 (2014). https://doi.org/10.1063/1.4874257

    Article  Google Scholar 

  84. V. A. Istomin and E. V. Kustova, “Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation,” Phys. Plasmas 24, 022109 (2017). https://doi.org/10.1063/1.4975315

    Article  Google Scholar 

  85. M. A. Rydalevskaya, Statistical and Kinetic Models in Physico-Chemical Gas Dynamics (S.-Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  86. M. A. Rydalevskaya and A. A. Morozov, “Equilibrium composition and sound velocity of reacting gas mixtures,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 122–130 (2012).

  87. M. A. Rydalevskaya and M. S. Romanova, “Determination of the equilibrium composition of ionized monatomic gases,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 108–116 (2013).

  88. M. A. Rydalevskaya, “Simplified method for calculation of equilibrium plasma composition,” Phys. A (Amsterdam, Neth.) 476, 49–57 (2017). https://doi.org/10.1016/j.physa.2017.02.025

  89. M. S. Romanova and M. A. Rydalevskaya, “Motion integrals and sound velocity in local equilibrium flows of ionized monatomic gases,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 5(63) (2), 310–320 (2018). https://doi.org/10.21638/11701/spbu01.2018.211

  90. M. A. Rydalevskaya and I. Yu. Shalamov, “Reduced description of local equilibrium monatomic oxygen flows with multiple ionization,” J. Phys.: Conf. Ser. 1959, 012042 (2021). https://doi.org/10.1088/1742-6596/1959/1/012042

    Article  Google Scholar 

  91. E. V. Kustova and E. A. Nagnibeda, “On a correct description of a multi-temperature dissociating CO2 flow,” Chem. Phys. 321, 293–310 (2006). https://doi.org/10.1016/j.chemphys.2005.08.026

    Article  Google Scholar 

  92. I. Armenise and E. Kustova, “On different contributions to the heat flux and diffusion in non-equilibrium flows,” Chem. Phys. 428, 90–104 (2014). https://doi.org/10.1016/j.chemphys.2013.11.003

    Article  Google Scholar 

  93. E. Kustova, M. Mekhonoshina, and A. Kosareva, “Relaxation processes in carbon dioxide,” Phys. Fluids 31, 046104 (2019). https://doi.org/10.1063/1.5093141

    Article  Google Scholar 

  94. O. Kunova, A. Kosareva, E. Kustova, and E. Nagnibeda, “Vibrational relaxation of carbon dioxide in state-to-state and multi-temperature approaches,” Phys. Rev. Fluids 5, 123401 (2020). https://doi.org/10.1103/PhysRevFluids.5.123401

    Article  Google Scholar 

  95. A. Kosareva, O. Kunova, E. Kustova, and E. Nagnibeda, “Four-temperature kinetic model for CO2 vibrational relaxation,” Phys. Fluids 33, 016103 (2021). https://doi.org/10.1063/5.0035171

    Article  Google Scholar 

  96. E. Kustova and M. Mekhonoshina, “Multi-temperature vibrational energy relaxation rates in CO2,” Phys. Fluids 32, 096101 (2020). https://doi.org/10.1063/5.0021654

    Article  Google Scholar 

  97. I. V. Alekseev and E. V. Kustova, “Numerical simulations of shock waves in viscous carbon dioxide flows using finite volume method,” Vestn. St. Petersburg Univ.: Math. 53, 344–350 (2020). https://doi.org/10.1134/S1063454120030024

    Article  MathSciNet  MATH  Google Scholar 

  98. I. Alekseev and E. Kustova, “Extended continuum models for shock waves in CO2,” Phys. Fluids 33, 096101 (2021). https://doi.org/10.1063/5.0062504

    Article  Google Scholar 

  99. A. Kosareva, O. Kunova, E. Kustova, and E. Nagnibeda, “Hybrid approach to accurate modeling of coupled vibrational-chemical kinetics in carbon dioxide,” Phys. Fluids 34, 026105 (2022). https://doi.org/10.1063/5.0079664

    Article  Google Scholar 

  100. A. Kosareva, M. Mekhonoshina, and E. Kustova, “Assessment of multi-temperature relaxation models for carbon dioxide vibrational kinetics,” Plasma Sources Sci. Technol. 31, 104002 (2022). https://doi.org/10.1088/1361-6595/ac91f2

    Article  Google Scholar 

  101. V. Istomin and E. Kustova, “State-specific transport properties of partially ionized flows of electronically excited atomic gases,” Chem. Phys. 485–486, 125–139 (2017). https://doi.org/10.1016/j.chemphys.2017.01.012

    Article  Google Scholar 

  102. E. V. Kustova, “Scalar forces/fluxes and reciprocity relations in flows with strong thermal and chemical non-equilibrium,” AIP Conf. Proc. 1501, 1078 (2012). https://doi.org/10.1063/1.4769661

    Article  Google Scholar 

  103. D. Bruno, M. Capitelli, E. Kustova, and E. Nagnibeda, “Non-equilibrium vibrational distribution and transport coefficients of N2(v)-N mixtures,” Chem. Phys. Lett. 308, 463–472 (1999). https://doi.org/10.1016/S0009-2614(99)00598-9

    Article  Google Scholar 

  104. E. V. Kustova, E. A. Nagnibeda, and A. Chikhaoui, “On the accuracy of non-equilibrium transport coefficients calculation,” Chem. Phys. 270, 459–469 (2001). https://doi.org/10.1016/S0301-0104(01)00416-5

    Article  Google Scholar 

  105. O. Kunova, E. Kustova, M. Mekhonoshina, and E. Nagnibeda, “Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O-mixtures,” Chem. Phys. 463, 70–81 (2015). https://doi.org/10.1016/j.chemphys.2015.10.004

    Article  Google Scholar 

  106. V. A. Istomin, E. V. Kustova, and K. A. Prut’ko, “Heat and radiative fluxes in strongly nonequilibrium flows behind shock waves,” Vestn. St. Petersburg Univ.: Math. 55, 461–470 (2022). https://doi.org/10.1134/S1063454122040094

    Article  MathSciNet  MATH  Google Scholar 

  107. A. S. Savel’ev and E. V. Kustova, “Limits of applicability of the Trinor–Marrone model for level-by-level dissociation rate coefficients N2 and O2,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 2(60), 266–277 (2015).

    Google Scholar 

  108. O. Kunova, E. Kustova, and A. Savelev, “Generalized Treanor–Marrone model for state-specific dissociation rate coefficients,” Chem. Phys. Lett. 659, 80–87 (2016). https://doi.org/10.1016/j.cplett.2016.07.006

    Article  Google Scholar 

  109. E. Kustova and A. Savelev, “Generalized model for state-resolved chemical reaction rate coefficients in high-temperature air,” J. Phys.: Conf. Ser. 1959, 012033 (2021). https://doi.org/10.1088/1742-6596/1959/1/012033

    Article  Google Scholar 

  110. E. V. Kustova, A. S. Savelev, and A. A. Lukasheva, “Refinement of state-resolved models for chemical kinetics using the data of trajectory calculations,” Fluid Dyn. 57, S46–S56 (2022). https://doi.org/10.1134/S0015462822601243

    Article  MATH  Google Scholar 

  111. E. V. Kustova, A. S. Savelev, and O. V. Kunova, “Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products,” AIP Conf. Proc. 1959, 060010 (2018). https://doi.org/10.1063/1.5034671

    Article  Google Scholar 

  112. E. V. Kustova and D. V. Makarkin, “Determination of dissociation reaction cross sections by the level coefficient of reaction rate,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 100–105 (2012).

  113. B. S. Baikov, D. K. Bayalina, and E. V. Kustova, “Inverse Laplace transformation for evaluation of state-specific cross sections for dissociation reaction and vibrational energy transitions,” Vestn. St. Petersburg Univ.: Math. 49, 389–397 (2016). https://doi.org/10.3103/S1063454116040038

    Article  MathSciNet  MATH  Google Scholar 

  114. B. S. Baikov, D. K. Bayalina, E. V. Kustova, and G. P. Oblapenko, “Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions,” AIP Conf. Proc. 1786, 090005 (2016). https://doi.org/10.1063/1.4967611

    Article  Google Scholar 

  115. O. V. Kornienko and E. V. Kustova, “Influence of variable molecular diameter on the viscosity coefficient in the state-to-state approach,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 3(61), 457–467 (2016). https://doi.org/10.21638/11701/spbu01.2016.314

    Article  Google Scholar 

  116. E. Kustova, M. Mekhonoshina, and G. Oblapenko, “On the applicability of simplified state-to-state models of transport coefficients,” Chem. Phys. Lett. 686, 161–166 (2017). https://doi.org/10.1016/j.cplett.2017.08.041

    Article  Google Scholar 

  117. A. I. Bechina and E. V. Kustova, “Rotational energy relaxation time of vibrationally excited molecules,” Vestn. St. Petersburg Univ.: Math. 52, 81–91 (2019). https://doi.org/10.3103/S1063454119010035

    Article  MathSciNet  Google Scholar 

  118. L. Campoli, G. P. Oblapenko, and E. V. Kustova, “Kinetic approach to physical processes in atmospheres library in C++,” Comput. Phys. Commun. 236, 244–267 (2019). https://doi.org/10.1016/j.cpc.2018.10.016

    Article  MATH  Google Scholar 

  119. V. A. Istomin, “An object-oriented software package for simulations of flow-field, transport coefficients and flux terms in non-equilibrium gas mixture flows,” AIP Conf. Proc. 1959, 060006 (2018). https://doi.org/10.1063/1.5034667

    Article  Google Scholar 

  120. E. A. Nagnibeda and K. A. Novikov, “On the role of multiquant transitions in level-by-level vibrational kinetics,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 91–99 (2006).

  121. E. A. Nagnibeda and K. A. Novikov, “On relaxation of nonequilibrium vibrational distributions in a dissociating diatomic gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 30–37 (2007).

  122. A. I. Mishina and E. V. Kustova, “Spatially homogeneous relaxation of CO molecules with resonant VE transitions,” Vestn. St. Petersburg Univ.: Math. 50, 188–197 (2017). https://doi.org/10.3103/S1063454117020108

    Article  MathSciNet  MATH  Google Scholar 

  123. O. V. Kunova and E. A. Nagnibeda, “A level-by-level description of vibrational and chemical relaxation in air,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 103–112 (2013).

  124. L. D. Mishin and E. V. Kustova, “On the influence multi-quant transitions on gas-dynamic parameters in the relaxation zone behind shock wave,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 3(61) (2), 300–308 (2016).

  125. O. Kunova, E. Kustova, M. Mekhonoshina, and G. Shoev, “Numerical simulation of coupled state-to-state kinetics and heat transfer in viscous non-equilibrium flows,” AIP Conf. Proc. 1786, 070012 (2016). https://doi.org/10.1063/1.4967588

    Article  Google Scholar 

  126. L. Campoli, O. Kunova, E. Kustova, and M. Melnik, “Models validation and code profiling in state-to-state simulations of shock heated air flows,” Acta Astronaut. 175, 493–509 (2020). https://doi.org/10.1016/j.actaastro.2020.06.008

    Article  Google Scholar 

  127. D. S. Kravchenko, E. V. Kustova, and M. Yu. Mel’nik, “Modeling of state-to-state oxygen kinetics behind reflected shock waves,” Vestn. St. Petersburg Univ.: Math. 55, 281–289 (2022). https://doi.org/10.1134/S1063454122030104

    Article  MathSciNet  MATH  Google Scholar 

  128. O. V. Kunova and E. A. Nagnibeda, “On the influence of models of exchange chemical reactions on the parameters of air flow behind strong shock waves,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 1(59), 124–133 (2014).

    Google Scholar 

  129. O. Kunova and E. Nagnibeda, “State-to-state description of reacting air flows behind shock waves,” Chem. Phys. 441, 66–76 (2014). https://doi.org/10.1016/j.chemphys.2014.07.007

    Article  Google Scholar 

  130. O. Kunova and E. Nagnibeda, “On the influence of state-to-state distributions on exchange reaction rates in shock heated air flows,” Chem. Phys. Lett. 625, 121–127 (2015). https://doi.org/10.1016/j.cplett.2015.02.042

    Article  Google Scholar 

  131. V. I. Gorikhovskii and E. V. Kustova, “Neural-network-based approach to the description of vibrational kinetics of carbon dioxide,” Vest. St. Petersburg Univ.: Math. 55, 434–442 (2022). https://doi.org/10.1134/S1063454122040070

    Article  MATH  Google Scholar 

  132. W. H. Wurster, C. E. Treanor, and M. J. Williams, Non-Equilibrium Radiation from Shock-Heated Air, Technical Report (Calspan — Univ. of Buffalo Research Center, Buffalo, N.Y., 1991).

  133. V. A. Gorelov, M. K. Gladyshev, A. Yu. Kireev, I. V. Yegorov, Yu. A. Plastinin, and G. F. Karabadzhak, “Experimental and numerical study of nonequilibrium ultraviolet NO and N2 + emission in shock layer,” J. Thermophys. Heat Transfer 12, 172–179 (1998). https://doi.org/10.2514/2.6342

    Article  Google Scholar 

  134. L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, O. P. Shatalov, Yu. V. Tunik, and I. E. Zabelinskii, “Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10800 K,” J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070

    Article  Google Scholar 

  135. J. W. Streicher, A. Krish, and R. K. Hanson, “Coupled vibration-dissociation timehistories and rate measurements in shock-heated, nondilute O2 and O2–Ar mixtures from 6000 to 14000 K,” Phys. Fluids 33, 056107 (2021). https://doi.org/10.1063/5.0048059

    Article  Google Scholar 

  136. V. T. Baluckram, A. J. Fangman, and D. A. Andrienko, “Simulation of oxygen chemical kinetics behind incident and reflected shocks via master equation,” J. Thermophys. Heat Transfer 37, 198–212 (2023). https://doi.org/10.2514/1.T6522

    Article  Google Scholar 

  137. E. A. Nagnibeda and K. V. Papina, “Non-equilibrium vibrational and chemical kineticsin air flows in nozzles,” Vestn. S.-Peterb. Univ., Mat., Mekh., Astron. 5(63), 287–299 (2018). https://doi.org/10.21638/11701/spbu01.2018.209

    Article  Google Scholar 

  138. A. I. Mishina and E. V. Kustova, “Kinetics of CO molecules taking into account resonant VE exchanges in a nonequilibrium nozzle flow,” Tech. Phys. 63, 331–338 (2018). https://doi.org/10.1134/S1063784218030155

    Article  Google Scholar 

  139. E. V. Kustova, E. A. Nagnibeda, I. Armenise, and M. Capitelli, “Non-equilibrium kinetics and heat transfer in O2/O mixtures near catalytic surfaces,” J. Thermophys. Heat Transfer 16, 238–244 (2002). https://doi.org/10.2514/2.6673

    Article  Google Scholar 

  140. I. Armenise, M. Barbato, M. Capitelli, and E. V. Kustova, “State-to-state catalytic models, kinetics and transport in hypersonic boundary layers,” J. Thermophys. Heat Transfer 20, 465–476 (2006). https://doi.org/10.2514/1.18218

    Article  Google Scholar 

  141. C. E. Treanor, I. W. Rich, and R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange dominated collisions,” J. Chem. Phys. 48, 1798 (1968). https://doi.org/10.1063/1.1668914

    Article  Google Scholar 

  142. E. V. Kustova and E. A. Nagnibeda, “Kinetic model for multi-temperature flows of reacting carbon dioxide mixture,” Chem. Phys. 398, 111–117 (2012). https://doi.org/10.1016/j.chemphys.2011.05.019

    Article  Google Scholar 

  143. C. Park, “Review of chemical-kinetic problems of future NASA missions, I: Earth entries,” J. Thermophys. Heat Transfer 7, 385–398 (1993). https://doi.org/10.2514/3.431

    Article  Google Scholar 

  144. C. Park, J. T. Howe, R. L. Jaffe, and G. V. Candler, “Review of chemical-kinetic problems of future NASA missions, II: Mars entries,” J. Thermophys. Heat Transfer 8, 9–23 (1994). https://doi.org/10.2514/3.496

    Article  Google Scholar 

  145. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).

    Google Scholar 

  146. L. D. Landau and E. Teller, “Theory of monomolecular reactions,” Phys. Z. Sowjetunion 10, 34–38 (1936).

    Google Scholar 

  147. E. V. Kustova and G. P. Oblapenko, “Normal stresses and velocities of slow processes in high-temperature gas flows with chemical and vibrational disequilibrium,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 111–120 (2013).

  148. E. Kustova and M. Mekhonoshina, “Novel approach for evaluation of CO2 vibrational relaxation times,” Chem. Phys. Lett. 764, 138288 (2021). https://doi.org/10.1016/j.cplett.2020.138288

    Article  Google Scholar 

  149. P. V. Marrone and C. E. Treanor, “Chemical relaxation with preferential dissociation from excited vibrational levels,” Phys. Fluids 6, 1215–1221 (1963). https://doi.org/10.1063/1.1706888

    Article  MATH  Google Scholar 

  150. O. Knab, H. H. Frühauf, and E. W. Messerschmid, “Theory and validation of the physically consistent coupled vibration–chemistry–vibration model,” J. Thermophys. Heat Transfer 9, 219–226 (1995). https://doi.org/10.2514/3.649

    Article  Google Scholar 

  151. O. Kunova, E. Nagnibeda, and I. Sharafutdinov, “Non-equilibrium reaction rates in air flows behind shock waves. State-to-state and three-temperature description,” AIP Conf. Proc. 1786, 150005 (2016). https://doi.org/10.1063/1.4967646

    Article  Google Scholar 

  152. A. M. Kozhapenko and E. V. Kustova, “Spatially homogeneous vibrational relaxation of CO2 in a four-temperature approximation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 13–21 (2007).

  153. A. A. Kosareva and E. A. Nagnibeda, “Dissociation and vibrational relaxation in aspatially homogeneous mixture CO2/CO/O,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 3(61), 468–480 (2016). https://doi.org/10.21638/11701/spbu01.2016.315

    Article  Google Scholar 

  154. I. V. Alekseev, A. A. Kosareva, E. V. Kustova, and E. A. Nagnibeda, “Various continuum approaches for studying shock wave structure in carbon dioxide,” AIP Conf. Proc. 1959, 060001 (2018). https://doi.org/10.1063/1.5034662

    Article  Google Scholar 

  155. A. Kosareva, E. Nagnibeda, and A. Savelev, “New multi-temperature reaction models for CO2 containing mixtures and their applications,” Chem. Phys. 533, 110718 (2020). https://doi.org/10.1016/j.chemphys.2020.110718

    Article  Google Scholar 

  156. B. Gordiets, A. Osipov, and L. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980; Gordon and Breach, New York, 1988).

  157. J. Olejniczak, G. V. Candler, M. J. Wright, I. Leyva, and H. G. Hornung, “Experimental and computational study of high enthalpy double-wedge flows,” J. Thermophys. Heat Transfer 13, 431–440 (1999). https://doi.org/10.2514/2.6481

    Article  Google Scholar 

  158. M. Holden, “Experimental studies of laminar separated flows induced by shock wave/boundary layer and shock/shock interaction in hypersonic flows for CFD validation,” in Proc. 38th Aerospace Sciences Meeting and Exhibit, Reno, Nev., Jan.10–13, 2000 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 2000), paper no. AIAA 2000–0930. https://doi.org/10.2514/6.2000-930

  159. M. Holden and T. Wadhams, “Code validation study of laminar shock/boundary layer and shock/shock interactions in hypersonic flow, part A: Experimental measurements,” Proc. 39th Aerospace Sciences Meeting and Exhibit, Reno, Nev., Jan. 8–11, 2001 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 2001), paper no. AIAA 2001–1031. https://doi.org/10.2514/6.2001-1031

  160. E. V. Kustova and E. A. Nagnibeda, “Kinetic description of the flows of a nonequilibrium reacting mixture CO2/O2/CO/S/O in a five-temperature approximation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 19–30 (2010).

  161. B. R. Hollis and J. N. Perkins, “Hypervelocity aeroheating measurements in wake of Mars mission entry vehicle,” in Proc. 26th AIAA Fluid Dynamics Conf., San Diego, Calif., June 19–22, 1995 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 1995), paper no. AIAA 95–2314.

  162. B. R. Hollis and J. N. Perkins, “High-enthalpy aerothermodynamics of a mars entry vehicle. Part 1: Experimental results,” J. Spacecr. Rockets 34, 449–456 (1997). https://doi.org/10.2514/2.3257

    Article  Google Scholar 

  163. E. Kustova, I. Alekseev, and L. Tan, “Investigation of shock wave structure in CO2 based on the continuum and DSMC approaches,” J. Phys.: Conf. Ser. 1959, 012032 (2021). https://doi.org/10.1088/1742-6596/1959/1/012032

    Article  Google Scholar 

  164. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms (Springer-Verlag, Berlin, 1994), in Ser.: Lecture Notes in Physics, Vol. 24.

  165. L. I. Mandelshtam and M. A. Leontovich, “On the theory of the sound absorption in liquids,” Russ. J. Exp. Theor. Phys. 7, 438–449 (1937).

    Google Scholar 

  166. L. Tisza, “Supersonic absorption and Stokes viscosity relation,” Phys. Rev. 61, 531–536 (1941). https://doi.org/10.1103/PhysRev.61.531

    Article  Google Scholar 

  167. D. Bruno and V. Giovangigli, “Internal energy relaxation processes and bulk viscosities in fluids,” Fluids 7, 356 (2022). https://doi.org/10.3390/fluids7110356

    Article  Google Scholar 

  168. E. Kustova, M. Mekhonoshina, A. Bechina, S. Lagutin, and Yu. Voroshilova, “Continuum models for bulk viscosity and relaxation in polyatomic gases,” Fluids 8, 48 (2023). https://doi.org/10.3390/fluids8020048

    Article  Google Scholar 

  169. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990). https://doi.org/10.1063/1.857813

    Article  Google Scholar 

  170. W. E. Meador, G. A. Miner, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: Fact or fiction?,” Phys. Fluids 8, 258–261 (1996). https://doi.org/10.1063/1.868833

    Article  MATH  Google Scholar 

  171. M. S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases,” Phys. Fluids 24, 066102 (2012). https://doi.org/10.1063/1.4729611

    Article  Google Scholar 

  172. E. V. Kustova and M. A. Mekhonoshina, “Models for bulk viscosity in carbon dioxide,” AIP Conf. Proc. 2132, 150006 (2019). https://doi.org/10.1063/1.5119646

    Article  Google Scholar 

  173. Y. Wang, W. Ubachs, and W. van de Water, “Bulk viscosity of CO2 from Rayleigh–Brillouin light scattering spectroscopy at 532 nm,” J. Chem. Phys. 150, 154502 (2019). https://doi.org/10.1063/1.5093541

    Article  Google Scholar 

  174. T. Elizarova, A. Khokhlov, and S. Montero, “Numerical simulation of shock wave structure in nitrogen,” Phys. Fluids 19, 068102 (2007). https://doi.org/10.1063/1.2738606

    Article  MATH  Google Scholar 

  175. E. V. Kustova, “On the role of bulk viscosity and relaxation pressure in nonequilibrium flows,” AIP Conf. Proc. 1084, 807–812 (2009). https://doi.org/10.1063/1.3076585

    Article  Google Scholar 

  176. S. Kosuge and K. Aoki, “Shock-wave structure for a polyatomic gas with large bulk viscosity,” Phys. Rev. Fluids 3, 023401 (2018). https://doi.org/10.1103/PhysRevFluids.3.023401

    Article  MATH  Google Scholar 

  177. I. V. Alekseev and E. V. Kustova, “Shock wave structure in CO2 taking into account bulk viscosity,” Vestn. S.‑Peterb. Univ., Mat., Mekh., Astron. 4(62), 642–653 (2017). https://doi.org/10.21638/11701/spbu01.2017.412

    Article  Google Scholar 

  178. S. Kosuge and K. Aoki, “Navier–Stokes equations and bulk viscosity for a polyatomic gas with temperature-dependent specific heats,” Fluids 8, 5 (2023). https://doi.org/10.3390/fluids8010005

    Article  Google Scholar 

  179. H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid. Mech. 74, 497–513 (1976). https://doi.org/10.1017/S0022112076001912

    Article  Google Scholar 

  180. E. V. Kustova and M. A. Mekhonoshina, “Relaxation pressure in a mixture of N2–N taking into account the nonequilibrium dissociation reaction,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 86–95 (2012).

  181. T. Arima, E. Barbera, F. Brini, and M. Sugiyama, “The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas,” Phys. Lett. A 378, 2695–2700 (2014). https://doi.org/10.1016/j.physleta.2014.07.031

    Article  MATH  Google Scholar 

  182. S. Taniguchi, T. Arima, T. Ruggeri, and M. Sugiyama, “Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas,” Phys. Fluids 26, 016103 (2014). https://doi.org/10.1063/1.4861368

    Article  Google Scholar 

  183. C. R. Wilke, “A viscosity equation for gas mixtures,” J. Chem. Phys. 18, 517–519 (1950). https://doi.org/10.1063/1.1747673

    Article  Google Scholar 

  184. E. A. Mason and S. C. Saxena, “Approximation formula for the thermal conductivity of gas mixtures,” Phys. Fluids 1, 361–369 (1958). https://doi.org/10.1063/1.1724352

    Article  MathSciNet  Google Scholar 

  185. S. T. Surzhikov and M. P. Shuvalov, “Checking computation data on radiative and convectional heating of next generation spacecraft,” High Temp. 51, 408–420 (2013). https://doi.org/10.1134/S0018151X13030061

    Article  Google Scholar 

  186. J. O. Hirschfelder, “Heat conductivity in polyatomic or electronically excited gases. II,” J. Chem. Phys. 26, 282–285 (1957). https://doi.org/10.1063/1.1743285

    Article  Google Scholar 

  187. M. Capitelli, “Transport properties of partially ionized gases,” J. Phys. Colloq. 38 (C3), 227–237 (1977). https://doi.org/10.1051/jphyscol:1977325

    Article  Google Scholar 

  188. M. Capitelli, R. Celiberto, C. Gorse, A. Laricchiuta, P. Minelli, and D. Pagano, “Electronically excited states and transport properties of thermal plasmas: The reactive thermal conductivity,” Phys. Rev. E 66, 016403 (2002). https://doi.org/10.1103/PhysRevE.66.016403

    Article  Google Scholar 

  189. M. Capitelli, R. Celiberto, C. Gorse, A. Laricchiuta, D. Pagano, and P. Traversa, “Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states,” Phys. Rev. E 69, 026412 (2004). https://doi.org/10.1103/PhysRevE.69.026412

    Article  Google Scholar 

  190. E. Eucken, “Über das Wärmeleitvermögen, die Spezifische Wärme und die innere Reibung der Gase,” Phys. Z. 14, 324–332 (1913).

    Google Scholar 

  191. V. A. Istomin and G. P. Oblapenko, “Transport coefficients in high-temperature ionized air flows with electronic excitation,” Phys. Plasmas 25, 013514 (2018). https://doi.org/10.1063/1.5017167

    Article  Google Scholar 

  192. N. V. Bogdanova and M. A. Rydalevskaya, “Equilibrium composition and physical and chemical characteristics of high-temperature air mixtures with diverse densities,” Vestn. S.-Peterb. Univ., Mat., Mekh., Astron. 4(62), 273–280 (2017). https://doi.org/10.21638/11701/spbu01.2017.211

    Article  Google Scholar 

  193. M. N. Saha, “LIII. Ionization in the solar chromosphere,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 40, 472–488 (1920). https://doi.org/10.1080/14786441008636148

    Article  Google Scholar 

  194. M. A. Rydalevskaya and Yu. N. Voroshilova, “Model kinetic equations for multiply ionized gas mixtures,” Front. Astron. Space Sci. 8, 696328 (2021). https://doi.org/10.3389/fspas.2021.696328

    Article  Google Scholar 

  195. T. Kozak and A. Bogaerts, “Splitting of CO2 by vibrational excitation in nonequilibrium plasmas: a reaction kinetics model,” Plasma Sources Sci. Technol. 23, 045004 (2014). https://doi.org/10.1088/0963-0252/23/4/045004

    Article  Google Scholar 

  196. A. Fridman, Plasma Chemistry (Cambridge Univ. Press, New York, 2008).

    Book  Google Scholar 

  197. V. Kotov, “Two-modes approach to the state-to-state vibrational kinetics of CO2,” J. Phys. B 53, 175104 (2020). https://doi.org/10.1088/1361-6455/ab9d01

    Article  Google Scholar 

  198. V. Kotov, “Two-modes model of the non-equilibrium plasma chemical dissociation of CO2,” Plasma Sources Sci. Technol. 30, 055003 (2021). https://doi.org/10.1088/1361-6595/abf368

    Article  Google Scholar 

  199. E. V. Kustova and E. A. Nagnibeda, “On a correct description of a multi-temperature dissociating CO2 flow,” Chem. Phys. 321, 293–310 (2006). https://doi.org/10.1016/j.chemphys.2005.08.026

    Article  Google Scholar 

  200. A. Kosareva and E. Nagnibeda, “Vibrational-chemical coupling in mixtures CO2/CO/O and CO2/CO/O2/O/C,” J. Phys.: Conf. Ser. 815, 012027 (2017). https://doi.org/10.1088/1742-6596/815/1/012027

    Article  Google Scholar 

  201. R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, “Calculation of vibrational relaxation times in gases,” J. Chem. Phys. 20, 1591 (1952). https://doi.org/10.1063/1.1700221

    Article  Google Scholar 

  202. J. Vargas, B. Lopez, and M. Lino da Silva, “Heavy particle impact vibrational excitation and dissociation processes in CO2,” J. Phys. Chem. A 125, 493–512 (2021). https://doi.org/10.1021/acs.jpca.0c05677

    Article  Google Scholar 

  203. R. L. McKenzie and J. O. Arnold, Experimental and Theoretical Investigation of the Chemical Kinetics and Non-Equilibrium CN Radiation Behind Shock Waves in CO 2 –N 2 -Mixtures, AIAA Paper No. 67–322 (American Inst. of Aeronautics and Astronautics, Reston, Va., 1967).

  204. S. A. Losev, P. V. Kozlov, L. A. Kuznetzova, V. N. Makarov, Yu. V. Romanenko, S. T. Surzhikov, and G. N. Zalogin, “Radiation of CO2–N2–Ar-mixture in a shock wave: Experiment and modeling,” in Proc. 3rd European Symp. on Aerothermodynamics for Space Vehicles, Estec, Noordwijk, The Netherlands, Nov. 24–26, 1998 (European Space Agency, Noordwijk, 1998), pp. 437–444.

  205. C. J. S. M. Simpson, K. B. Bridgman, and T. R. D. Chandler, “Shock-tube study of vibrational relaxation in carbon dioxide,” J. Chem. Phys. 49, 513–522 (1968). https://doi.org/10.1063/1.1670105

    Article  Google Scholar 

  206. R. L. Taylor and S. Bitterman, “Survey of vibrational relaxation data for process important in the CO2–N2 laser system,” Rev. Mod. Phys. 41, 26 (1969). https://doi.org/10.1103/RevModPhys.41.26

    Article  Google Scholar 

  207. O. V. Achasov and D. S. Ragosin, “Rate constants of V-V exchange for CO2–GDL,” Preprint No. 16 (Inst. of Heat and Mass Transfer, Minsk, BSSR, 1986).

  208. V. A. Istomin, “Similarity criteria and different approaches of kinetic theory,” AIP Conf. Proc. 2132, 130005 (2019). https://doi.org/10.1063/1.5119625

    Article  Google Scholar 

  209. V. Istomin and E. Kustova, “PAINeT: Implementation of neural networks for transport coefficients calculation,” J. Phys.: Conf. Ser. 1959, 012024 (2021). https://doi.org/10.1088/1742-6596/1959/1/012024

    Article  Google Scholar 

  210. M. A. Bushmakova and E. V. Kustova, “Modeling the vibrational relaxation rate using machine-learning methods,” Vestn. St. Petersburg Univ.: Math. 55, 87–95 (2022). https://doi.org/10.1134/S1063454122010022

    Article  MathSciNet  MATH  Google Scholar 

  211. L. Campoli, E. Kustova, and P. Maltseva, “Assessment of machine learning methods for state-to-state approaches,” Mathematics 10, 928 (2022). https://doi.org/10.3390/math10060928

    Article  Google Scholar 

  212. V. I. Gorikhovskii and E. A. Nagnibeda, “Energy exchange rate coefficients in modeling carbon dioxide kinetics: Calculation optimization,” Vestn. St. Petersburg Univ.: Math. 52, 428–435 (2019). https://doi.org/10.1134/S1063454119040046

    Article  MathSciNet  Google Scholar 

  213. V. I. Gorikhovskii and E. A. Nagnibeda, “Optimization of CO2 vibrational kinetics modeling in the full state-to-state approach,” Vestn. St. Petersburg Univ.: Math. 53, 358–365 (2020). https://doi.org/10.1134/S1063454120030085

    Article  MathSciNet  MATH  Google Scholar 

  214. M. A. Rydalevskaya and Yu. N. Voroshilova, “Influence of transfer, release, and absorption of energy on vortex properties of ideal fluids,” Vestn. St. Petersburg Univ.: Math. 48, 280–284 (2015). https://doi.org/10.3103/S106345411504010X

    Article  MathSciNet  MATH  Google Scholar 

  215. E. V. Kustova and I. A. Kushner, “Calculation of transfer coefficients in nonequilibrium mixtures of reacting gases by exact and approximate formulas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 99–106 (2005).

  216. O. V. Zharkova and M. A. Rydalevskaya, “Modeling of the structure of shock waves in a dissociating diatomic gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 7–12 (2007).

  217. E. A. Nagnibeda, K. A. Sinitsyn, and S. S. Bazylevich, “Dissociation rate coefficients in an oscillation-nonequilibrium gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 92–101 (2006).

  218. M. A. Rydalevskaya, “Hierarchy of relaxation times and model kinetic equations,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 55–62 (2010).

  219. M. A. Rydalevskaya, S. G. Shumkov, and M. G. Ignatkova, “Relaxation gas dynamics of carbon dioxide at moderate temperatures,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 129–135 (2012).

  220. E. V. Kustova and L. A. Puzyreva, “Specific heat capacity of vibrationally nonequilibrium carbon dioxide,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 87–93 (2005).

Download references

Funding

The work is supported by St. Petersburg State University (project ID 93022273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Voroshilova, V. A. Istomin, O. V. Kunova, E. V. Kustova, E. A. Nagnibeda or M. A. Rydalevskaya.

Additional information

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voroshilova, Y.N., Istomin, V.A., Kunova, O.V. et al. Scientific School of Nonequilibrium Aeromechanics at St. Petersburg State University. Vestnik St.Petersb. Univ.Math. 56, 289–321 (2023). https://doi.org/10.1134/S1063454123030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454123030111

Keywords:

Navigation