Skip to main content
Log in

A Numerical Prediction for Hole-Splitting Damage of DP Steels Based on Plastic Work Criterion Using a Polynomial Stress Potential

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

The main purpose of this study is to exhibit failure prediction capability of polynomial-based yield functions with a basic damage model. For this purpose, a constitutive model considering anisotropic plasticity and ductile fracture was developed. In this model, anisotropic plastic behavior of dual phase steels, namely DP600 and DP800, was described by quadratic Hill48 and non-quadratic anisotropic homogeneous the fourth-order polynomial (HomPol4) stress potentials and the generalized plastic work criterion from ductile damage models was used for the prediction of fracture initiation. The model has been implemented into an implicit finite element (FE) code. The parameters of the constitutive model were calibrated with uniaxial tensile tests performed in different directions with respect to the rolling direction of the materials and anisotropic stress potentials were evaluated by comparison of the predicted in-plane variations of the plastic properties (yield stress ratios and Lankford coefficients), and yield locus contours with experimental data. The calibrated model was firstly applied to uniaxial tensile test and then to a hole expansion test to predict fracture. The stroke values at fracture, hole expansion ratios (HER) and fracture locations were investigated. Any significant difference between the anisotropic stress potentials was not observed in terms of HER predictions, however plastic work criterion in conjunction with HomPol4 function predicted the crack initiation locations accurately on the fractured samples. Afterward, the Lode parameter and stress triaxiality effects were investigated in fracture stroke prediction. Since the HomPol4 predictions of fracture initiation locations are accurate, the predicted HomPol4 results from the generalized plastic work criterion were compared with the modified Mohr-Coulomb ductile fracture model results. A significant improvement was observed in the fracture displacement predictions. However, it is seen that the failure location predictions of both models were the same. From these results, it can be concluded that the HomPol4 yield criterion has an effective potential to predict the failure locations even though with a basic damage model. In the current study, the out-of-plane anisotropy effect was assessed as well. To this end, Hill48’s parameter correlated with the out-of-plane shear components were adjusted. It was found that the out-of-plane anisotropy has a negligible effect on the predictions of HER and fracture initiation location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Chen XM, McKune PM, Prince DG (2003) Automotive applications of stretch flange high strength steel. SAE Tech Pap Ser 2003–01–0690. https://doi.org/10.4271/2003-01-0690

  2. Hance BM (2017) Practical application of the hole expansion test. SAE Int J Engines. https://doi.org/10.4271/2017-01-0306

    Article  Google Scholar 

  3. Paul SK (2019) Effect of punch geometry on hole expansion ratio. Proc Inst Mech Eng Part B: J Eng Manuf. https://doi.org/10.1177/0954405419863222

    Article  Google Scholar 

  4. Sadagopan S, Urban D, Wong C, Huang M, Yan B (2003) Formability characterization of a new generation of high strength steels. Tech Rep. https://doi.org/10.2172/1001171

    Article  Google Scholar 

  5. Chatterjee S, Bhadeshia HKDH (2007) Stretch-flangeability of strong multiphase steels. Mater Sci Technol. https://doi.org/10.1179/174328407X179511

    Article  Google Scholar 

  6. Hance BM (2016) Advanced high strength steel: deciphering local and global formability. Proc International Automotive Body Congress Dearborn, Michigan, USA

    Google Scholar 

  7. Heibel S, Dettinger T, Nester W, Clausmeyer T, Tekkaya AE (2018) Damage mechanisms and mechanical properties of high-strength multiphase steels. Materials. https://doi.org/10.3390/ma11050761

    Article  Google Scholar 

  8. Larour P, Freudenthaler J, Pauli H, Kerschbaum M, Wagner L, Felbinger A, Sonnleitner F, Angeli J (2021) Local formability assessment of AHSS steels with shear cut tensile tests. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/1157/1/012054

    Article  Google Scholar 

  9. Fang X, Fan Z, Ralph B, Evans P, Underhill R (2003) The relationships between tensile properties and hole expansion property of C-Mn steels. J Mater Sci. https://doi.org/10.1023/A:1025913123832

    Article  Google Scholar 

  10. Yoon JI, Jung J, Lee HH, Kim GS, Kim HS (2016) Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Met Mater Int. https://doi.org/10.1007/s12540-016-6346-5

    Article  Google Scholar 

  11. Adamczyk RD, Michal GM (1986) Sheared edge extension of high-strength cold-rolled steels. J Appl Metalwork. https://doi.org/10.1007/BF02834379

    Article  Google Scholar 

  12. Comstock RJ, Scherrer DK, Adamczyk RD (2006) Hole expansion in a variety of sheet steels. J Mater Eng Perform. https://doi.org/10.1361/105994906X150830

    Article  Google Scholar 

  13. Paul SK (2014) Non-linear correlation between uniaxial tensile properties and shear-edge hole expansion ratio. J Mater Eng Perform. https://doi.org/10.1007/s11665-014-1161-y

    Article  Google Scholar 

  14. Larour P, Hinterdorfer J, Wagner L, Freudenthaler J, Grünsteidl A, Kerschbaum M (2022) Stretch flangeability of AHSS automotive grades versus cutting tool clearance, wear, angle and radial strain gradients. IOP Conf Ser Mater Sci Eng 1238012041. https://doi.org/10.1088/1757-899X/1238/1/012041

  15. Al-Furjan MSH, Hatami A, Habibi M, Shan L, Tounsi A (2021) On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Comp Struct. https://doi.org/10.1016/j.compstruct.2020.113150

    Article  Google Scholar 

  16. Al-Furjan MSH, Habibi M, Ghabussi A, Safarpour H, Safarpour M, Tounsi A (2021) Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111496

    Article  Google Scholar 

  17. Al-Furjan MSH, Habibi M, Ni J, Jung DW, Tounsi A (2022) Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng Comput. https://doi.org/10.1007/s00366-020-01200-x

    Article  Google Scholar 

  18. Huang X, Hao H, Oslub K, Habibi M, Tounsi A (2022) Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng Comput. https://doi.org/10.1007/s00366-021-01399-3

    Article  Google Scholar 

  19. Vinh PV, Chinh NV, Tounsi A (2022) Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A Solids. https://doi.org/10.1016/j.euromechsol.2022.104743

    Article  Google Scholar 

  20. Kuwabara T, Hashimoto K, Iizuka E, Yoon JW (2011) Effect of anisotropic yield functions on the accuracy of hole expansion simulations. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2010.10.025

    Article  Google Scholar 

  21. Iizuka E, Hashimoto K, Kuwabara T (2014) Effects of anisotropic yield functions on the accuracy of forming simulations of hole expansion. Procedia Eng. https://doi.org/10.1016/j.proeng.2014.10.346

    Article  Google Scholar 

  22. Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast. https://doi.org/10.1016/j.ijplas.2016.10.002

    Article  Google Scholar 

  23. Lee JY, Lee KJ, Lee MG, Kuwabara T, Barlat F (2019) Numerical modeling for accurate prediction of strain localization in hole expansion of a steel sheet. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2018.08.005

    Article  Google Scholar 

  24. Korkolis YP, Brownell B, Coppieters S, Tian H (2016) Modeling of hole-expansion of AA6022-T4 aluminum sheets with anisotropic non-quadratic yield functions. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/734/3/032083

    Article  Google Scholar 

  25. Ha J, Korkolis YP (2021) Hole-expansion: sensitivity of failure prediction on plastic anisotropy modeling. J Manuf Mater Process. https://doi.org/10.3390/jmmp5020028

    Article  Google Scholar 

  26. Chung K, Ma N, Park T, Kim D, Yoo D, Kim C (2011) A modified damage model for advanced high strength steel sheets. Int J Plast. https://doi.org/10.1016/j.ijplas.2011.01.007

    Article  Google Scholar 

  27. Takuda H, Ozawa K, Hama T, Yoshida T, Nitta J (2009) Forming limit prediction in bore expansion by combination of finite element simulation and ductile fracture criterion. Mater Trans. https://doi.org/10.2320/matertrans.P-M2009817

    Article  Google Scholar 

  28. Yoon JI, Jung J, Kim JG, Sohn SS, Lee S, Kim HS (2017) Key factors of stretch-flangeability of sheet materials. J Mater Sci. https://doi.org/10.1007/s10853-017-1012-y

    Article  Google Scholar 

  29. Chinara M, Paul SK, Chatterjee S, Mukherjee S (2021) Effect of planar anisotropy on the hole expansion ratio of cold rolled DP590 steel. Trans Indian Inst Met. https://doi.org/10.1007/s12666-021-02444-x

    Article  Google Scholar 

  30. Mu L, Wang Y, Zang Y, Malaquias P, Stemler A (2017) Edge fracture prediction using uncoupled ductile fracture models for DP780 sheet. J Fail and Preven. https://doi.org/10.1007/s11668-017-0245-z

    Article  Google Scholar 

  31. Lou Y, Huh H, Lim S, Pack K (2012) New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2012.02.016

    Article  Google Scholar 

  32. Oh SI, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing-part 2: workability in extrusion and drawing. J Eng Ind. https://doi.org/10.1115/1.3439471

    Article  Google Scholar 

  33. Brozzo P, DeLuca B, Rendina R (1972) A new method for the prediction of formability in metal sheets. Proceedings of the 7th Biennial Conference of IDDRG on Sheet Metal Forming and Formability. Amsterdam, Netherlands

  34. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc London Ser A 193A. https://doi.org/10.1098/rspa.1948.0045

  35. Kilic S, Ozturk F, Toros S (2019) Analysis of yield criteria and flow curves on FLC for TWIP900 steels. Exp Tech. https://doi.org/10.1007/s40799-020-00382-9

    Article  Google Scholar 

  36. Caminero MA (2015) Experimental study of the evolution of plastic anisotropy in 5754 Al-Mg cold rolled sheets. Exp Tech. https://doi.org/10.1111/j.1747-1567.2012.00870.x

    Article  Google Scholar 

  37. Soare S, Yoon JW, Cazacu O (2008) On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int J Plast. https://doi.org/10.1016/j.ijplas.2007.07.016

    Article  Google Scholar 

  38. Sener B, Kilicarslan ES, Firat M (2020) Modelling anisotropic behavior of AISI 304 stainless steel sheet using a fourth-order polynomial yield function. Proc Manuf. https://doi.org/10.1016/j.promfg.2020.04.320

    Article  Google Scholar 

  39. Sener B, Esener E, Firat M (2021) Modeling plastic anisotropy evolution of AISI 304 steel sheets by a polynomial yield function. SN Appl Sci. https://doi.org/10.1007/s42452-021-04206-2

    Article  Google Scholar 

  40. Kovalewski L, Gajewski M (2019) Assessment of optimization methods used to determine plasticity parameters based on DIC and back calculation methods. Exp Tech. https://doi.org/10.1007/s40799-018-00298-5

    Article  Google Scholar 

  41. Freudenthal AM (1950) The Inelastic Behavior of Engineering materials and structures. John Wiley and Sons Inc., New York. https://doi.org/10.1017/S0368393100124514

    Book  Google Scholar 

  42. Aksen TA, Sener B, Firat M (2020) Failure prediction capability of generalized plastic work criterion. Proc Manuf. https://doi.org/10.1016/j.promfg.2020.04.190

    Article  Google Scholar 

  43. Bai Y, Wierzbicki T (2010) Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract. https://doi.org/10.1007/s10704-009-9422-8

    Article  Google Scholar 

  44. Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2010.06.021

    Article  Google Scholar 

  45. Luo M, Wierzbicki T (2010) Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2010.07.010

    Article  Google Scholar 

  46. Habibi N, Ramazani A, Sundararaghavan V, Prahl U (2018) Failure predictions of DP600 steel sheets using various uncoupled fracture criteria. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2017.12.022

    Article  Google Scholar 

  47. Alaie A, Kadkhodapour J, Rad SZ, Asadabad MA, Schmauder S (2015) Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2014.11.042

    Article  Google Scholar 

  48. Aşık EE, Perdahcıoğlu ES, Boogard VD (2019) Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2018.10.018

    Article  Google Scholar 

  49. Heibel S, Nester W, Clausmeyer T, Tekkaya AE (2016) Damage characterization of high-strength multiphase steels, IOP conf. Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/159/1/012013

    Article  Google Scholar 

  50. ASTME517-19 Standard Test Method for Plastic Strain Ratio r for Sheet Metal. https://doi.org/10.1520/E0517-19

  51. Stoughton TB, Shi MF, Huang G, Yoon JW (2014) Material characterizations for benchmark 1 and benchmark 2. Numisheet 2014 AIP Conf Proc. https://doi.org/10.1063/1.4849976

    Article  Google Scholar 

  52. Cardoso MC, Moreira LP (2015) : Forming limit analysis of DP600-800 steels. Int J Mat Metal Eng. scholar.waset.org/1307–6892/10002286

  53. International Organization for Standardization (ISO) (2009) Technical Specification, Metallic materials – Method of Hole Expanding Test, ISO/TS 16630. https://www.iso.org

  54. Levin E, Larour P, Heuse M, Staupendahl D, Clausmeyer T, Tekkaya AE (2018) Influence of cutting tool stiffness on edge formability. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/418/1/012061

    Article  Google Scholar 

  55. Dieter GE (1988) Mechanical Metallurgy. Third ed., London

  56. Qin S, Beese AM (2020) Multiaxial fracture of DP600: experiments and finite element modeling. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.139386

    Article  Google Scholar 

  57. Kusche CF, Pütz F, Münstermann S, Al-Samman T, Korte-Kerzel S (2021) On the effect of strain and triaxiality on void evolution in a heterogeneous microstructure – a statistical and single void study of damage in DP800 steel. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2020.140332

    Article  Google Scholar 

  58. Paul SK (2020) A critical review on hole expansion ratio. Materialia. https://doi.org/10.1016/j.mtla.2019.100566

    Article  Google Scholar 

  59. Marc 2018.1 Volume A: Theory and User Manual. https://help.hexagonmi.com/tr-TR/bundle/Marc_2021.4-Volume_A_Theory_and_User_Information/resource/Marc_2021.4-Volume_A_Theory_and_User_Information.pdf

  60. Marc 2018.1 Volume B: Element Library. https://help.hexagonmi.com/tr-TR/bundle/Marc_2021.1-Volume_B_Element_Library/resource/Marc_2021.1-Volume_B_Element_Library.pdf

  61. Choi SH, Kim EY, Kim SI (2014) The micromechanical deformation behaviors of hot rolled 590FB steel during hole-expansion test. Int J Plast. https://doi.org/10.1016/j.ijplas.2013.11.010

    Article  Google Scholar 

  62. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  63. Lou Y, Yoon JW, Huh H (2014) Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. https://doi.org/10.1016/j.ijplas.2013.08.006

    Article  Google Scholar 

  64. Hancock JW, Brown DK (1983) On the role of strain and stress state in ductile failure. J Mech Phys Solids. https://doi.org/10.1016/0022-5096(83)90017-0

    Article  Google Scholar 

  65. Paul SK (2019) The effect of deformation gradient on necking and failure in hole expansion test. Manuf Lett. https://doi.org/10.1016/j.mfglet.2019.08.004

    Article  Google Scholar 

  66. Bettaieb MB, Meraim FA (2017) Theoretical and numerical investigation of the impact of out-of-plane compressive stress on sheet metal formability. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2017.05.046

    Article  Google Scholar 

  67. Liu W, Chen BK, Pang Y, Najafzadeh A (2020) A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2020.02.008

    Article  Google Scholar 

  68. Cazacu O (2018) New yield criteria for isotropic and textured metallic materials. Int J Solids Struct (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.036

Download references

Acknowledgements

This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2019-3721. The authors would like to thank Yildiz Technical University Scientific Research Projects Coordination Unit for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization [Mehmet Fırat]; Project administration [Mehmet Firat]; Formal analysis and investigation [Toros Arda Akşen, Bora Şener]; Methodology [Mehmet Fırat], [Emre Esener]; Software [Toros Arda Akşen], [Mehmet Firat]; Validation [Toros Arda Akşen], [Bora Şener]; Visualization [Emre Esener], [Bora Şener]; Writing-original draft preparation [Toros Arda Akşen], [Bora Şener]; Writing-review & editing [Emre Esener], [Mehmet Firat]; Supervision [Mehmet Firat].

Corresponding author

Correspondence to M. Firat.

Ethics declarations

Competing Interest

The authors declare that they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firat, M., Akşen, T.A., Şener, B. et al. A Numerical Prediction for Hole-Splitting Damage of DP Steels Based on Plastic Work Criterion Using a Polynomial Stress Potential. Exp Tech (2023). https://doi.org/10.1007/s40799-023-00676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40799-023-00676-8

Keywords

Navigation