Skip to main content

Advertisement

Log in

Development and Evaluation of Fucoidan-Based Liposomes: Targeting Smooth Muscle Cells for Atherosclerosis Treatment

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aims to develop effective fucoidan extracted from Undaria pinnatifida seaweed (FCU)-based liposomes for the treatment of atherosclerosis, with a specific focus on human aortic smooth muscle cells (hAoSMCs).

Methods

To develop active liposomes, our research began by investigating the pharmacological activity of FCU towards hAoSMCs before proceeding to the development of FCU-based liposomes using Ox-LDL uptake assessment and ELISA. After confirmation of the pharmaceutical activity of FCU, we designed and formulated two novel types of liposomes: FCU-coated liposomes (FCU-Lip) and sirolimus-loaded FCU-coated liposomes (FCU-Sir-Lip). The developed formulation was then characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro studies were conducted to evaluate the effects of FCU-Lip and FCU-Sir-Lip targeting SMCs for atherosclerotic treatment, focusing on SMC proliferation, foam cell formation, and the secretion of inflammatory cytokines by hAoSMCs.

Results

The results demonstrated the pharmacological activity of FCU towards hAoSMCs. The formulated FCU-Lip and FCU-Sir-Lip liposomes exhibited sizes of approximately 153.15 nm and 169.13 nm, respectively, with a polydispersity index (PDI) of around 0.15. The zeta potential of both FCU-Lip and FCU-Sir-Lip was approximately -20 mV. FCU-Sir-Lip showed sirolimus encapsulation efficiency of approximately 60%. In vitro studies further revealed the efficacy of FCU-Lip and FCU-Sir-Lip in suppressing hAoSMC proliferation, foam cell formation, and reducing inflammation.

Conclusion

This study demonstrates the therapeutic potential of FCU as an active pharmaceutical ingredient for treating atherosclerosis, specifically targeting hAoSMCs. Furthermore, the observed efficacy of FCU-based liposomes highlights their potential as novel therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46(5):328–38.

    Article  PubMed  Google Scholar 

  2. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406.

    PubMed  PubMed Central  Google Scholar 

  3. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–22.

    Article  CAS  PubMed  Google Scholar 

  4. Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.

    Article  CAS  PubMed  Google Scholar 

  5. Kruth HS. Macrophage foam cells and atherosclerosis. Front Biosci (Landmark Ed). 2001;6(3):429–55.

    Article  Google Scholar 

  6. Miller CL, Zhang H. Clarifying the distinct roles of smooth muscle cell–derived versus macrophage foam cells and the implications in atherosclerosis. Arterioscler Thromb Vasc Biol. 2021;41(6):2035–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braga WF, Aguilar EC, Alvarez-Leite JA. Fucoidans as a potential nutraceutical in combating atherosclerotic cardiovascular diseases. Biomed J Sci & Tech Res. 2019;21(3):15953–8.

    Google Scholar 

  8. Sun Y, Xu M, Wang C, Guan S, Wang L, Cong B, et al. Low-molecular-weight fucoidan bidirectionally regulates lipid uptake and cholesterol efflux through p38 MAPK phosphorylation. Int J Biol Macromol. 2022;220:371–84.

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol. 2018;118:365–74.

    Article  CAS  PubMed  Google Scholar 

  10. Peng Y, Song Y, Wang Q, Hu Y, He Y, Ren D, et al. In vitro and in vivo immunomodulatory effects of fucoidan compound agents. Int J Biol Macromol. 2019;127:48–56.

    Article  CAS  PubMed  Google Scholar 

  11. Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym. 2021;270: 118347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim KJ, Lee OH, Lee BY. Genotoxicity studies on fucoidan from Sporophyll of Undaria pinnatifida. Food Chem Toxicol. 2010;48(4):1101–4.

    Article  CAS  PubMed  Google Scholar 

  13. Kim K-J, Yoon K-Y, Lee B-Y. Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. Fitoterapia. 2012;83(8):1628–35.

  14. Liyanage N, Lee H-G, Nagahawatta D, Jayawardhana H, Song K-M, Choi Y-S, et al. Fucoidan from Sargassum autumnale inhibits potential inflammatory responses via NF-κB and MAPK pathway suppression in lipopolysaccharide-induced RAW 264.7 macrophages. Mar Drugs. 2023;21(7):374.

  15. Ye J, Chen D, Ye Z, Huang Y, Zhang N, Lui EM, et al. Fucoidan isolated from Saccharina japonica inhibits LPS-induced inflammation in macrophages via blocking NF-κB, MAPK and JAK-STAT pathways. Mar Drugs. 2020;18(6):328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahmad T, Eapen MS, Ishaq M, Park AY, Karpiniec SS, Stringer DN, et al. Anti-inflammatory activity of fucoidan extracts in vitro. Mar Drugs. 2021;19(12):702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huwait E, Al-Saedi DA, Mirza Z. Anti-inflammatory potential of fucoidan for atherosclerosis: in silico and in vitro studies in THP-1 cells. Molecules. 2022;27(10):3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Oliveira C, Li Q, Ferreira AS, Nunes C, Coimbra MA, et al. Fucoidan from Fucus vesiculosus inhibits inflammatory response, both in vitro and in vivo. Mar Drugs. 2023;21(5):302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu F, Wang J, Chang AK, Liu B, Yang L, Li Q, et al. Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine. 2012;19(8):797–803.

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Li J, Li Z, Sang Y, Niu Y, Zhang Q, et al. Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model. Food Funct. 2016;7(5):2398–408.

    Article  CAS  PubMed  Google Scholar 

  21. Wardani G, Nugraha J, Kurnijasanti R, Mustafa MR, Sudjarwo SA. Molecular mechanism of fucoidan nanoparticles as protector on endothelial cell dysfunction in diabetic rats’ aortas. Nutrients. 2023;15(3):568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirsten N, Ohmes J, Mikkelsen MD, Nguyen TT, Blümel M, Wang F, et al. Impact of enzymatically extracted high molecular weight fucoidan on lipopolysaccharide-induced endothelial activation and leukocyte adhesion. Mar Drugs. 2023;21(6):339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandes-Braga W, Aguilar EC, Navia-Pelaez JM, Ávila DL, Rezende L, de Oliveira AL, et al. The atheroprotective role of fucoidan involves the reduction of foam cell formation by altering cholesterol flux-associated factors in macrophages. Biochem Biophys Res Commun. 2023;650:21–9.

    Article  CAS  PubMed  Google Scholar 

  24. Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AK, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Bravo KMC, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 2021;6(2):78–94.

    Article  CAS  PubMed  Google Scholar 

  27. Liu G, Hou S, Tong P, Li J. Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Crit Rev Anal Chem. 2022;52(2):392–412.

    Article  CAS  PubMed  Google Scholar 

  28. Lima Salviano T, Dos Santos Macedo DC, de Siqueira Ferraz Carvalho R, Pereira MA, de Arruda Barbosa VS, Dos Santos Aguiar J, et al. Fucoidan-coated liposomes: a target system to deliver the antimicrobial drug usnic acid to macrophages infected with Mycobacterium tuberculosis. J Biomed Nanotechnol. 2021;17(8):1699–710.

  29. Linares-Alba MA, Gómez-Guajardo MB, Fonzar JF, Brooks DE, García-Sánchez GA, Bernad-Bernad MJ. Preformulation studies of a liposomal formulation containing sirolimus for the treatment of dry eye disease. J Ocul Pharmacol Ther. 2015;32(1):11–22.

    Article  PubMed  Google Scholar 

  30. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Owsiany KM, Alencar GF, Owens GK. Revealing the origins of foam cells in atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2019;39(5):836–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DuRoss AN, Landry MR, Thomas CR Jr, Neufeld MJ, Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett. 2021;500:208–19.

    Article  CAS  PubMed  Google Scholar 

  33. Kang S, Kang K, Chae A, Kim Y-K, Jang H, Min D-H. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale. 2019;11(32):15173–83.

    Article  CAS  PubMed  Google Scholar 

  34. Ho T-L, Mutalik C, Rethi L, Nguyen H-NT, Jheng P-R, Wong C-C, et al. Cancer-targeted fucoidan-iron oxide nanoparticles for synergistic chemotherapy/chemodynamic theranostics through amplification of P-selectin and oxidative stress. Int J Biol Macromol. 2023;235:123821.

  35. Shanthi N, Arumugam P, Murugan M, Sudhakar MP, Arunkumar K. Extraction of fucoidan from Turbinaria decurrens and the synthesis of fucoidan-coated AgNPs for anticoagulant application. ACS Omega. 2021;6(46):30998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeon C, Jun H, Kim S, Song N, Yang M, Lim C, et al. Clot-targeted antithrombotic liposomal nanomedicine containing high content of H2O2-activatable hybrid prodrugs. ACS Appl Mater Interfaces. 2023;15(7):8999–9009.

    Article  CAS  Google Scholar 

  37. Lima Salviano T, dos Santos M, Charles D, de Siqueira Ferraz Carvalho R, Pereira MA, de Arruda B, et al. Fucoidan-coated liposomes: a target system to deliver the antimicrobial drug usnic acid to macrophages infected with Mycobacterium tuberculosis. J Biomed Nanotechnol. 2021;17(8):1699–710.

  38. Elbi S, Nimal TR, Rajan VK, Baranwal G, Biswas R, Jayakumar R, et al. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces. 2017;160:40–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Yu.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Yu, L. Development and Evaluation of Fucoidan-Based Liposomes: Targeting Smooth Muscle Cells for Atherosclerosis Treatment. J Pharm Innov 18, 2120–2130 (2023). https://doi.org/10.1007/s12247-023-09778-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09778-7

Keywords

Navigation