Skip to main content
Log in

A Study on the Molecular Mechanisms of Herbicide Binding with Target Proteins in Weeds Using In Silico Methods

  • PLANT BREEDING, PLANT PROTECTION, AND BIOTECHNOLOGY
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

The research was carried out in order to study the molecular mechanisms of herbicide binding (pinoxaden, quizalofop-P-tefuril, prometrin, metribuzin, metsulfuron-methyl) with target proteins (acetyl-CoA-carboxylase, acetolactate synthase, cytochrome P450, 4-hydroxyphenylpyruvate dioxygenase) of weeds growing in Siberia: common wild oat (Avena fatua L.), couch grass (Elymus repens (L.) Gould), red-root amaranthus (Amaranthus retroflexus L.), white gauze (Chenopodium album L.), and green foxtail (Setaria viridis (L) P Beauv). The study was carried out in Novosibirsk oblast in 2022–2023. Using the bioinformatic methods, virtual three-dimensional complexes of pesticides and their targets have been created. A new approach to identifying the parameters of the cavity of binding sites is proposed, which consists in combining the alignment method and the machine-learning technology. Docking of pesticides with targets has been carried out. Calculation of the binding energy indicates a high degree of stability of the ligand-protein complexes. The proposed in silico approach may be useful for elucidating the behavior of herbicides when bound to weed enzymes. This approach allows a deeper understanding of the mechanism of action and ecotoxicological aspects of pesticide use. The complexes of herbicides and proteins involved have a potential high stability due to the low energy of binding to receptors, which varies from –5.60 to –13.24 kcal/mol. The value of the binding energy has not shown a direct dependence on the number of amino acid residues of the ligand-binding site. In general, the study has complemented some aspects of the molecular mechanisms of herbicide binding to weed target proteins; however, more in-depth study is required in order to localize critical amino acid points involved in the biological functions of target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Chauhan, B.S., The world’s first glyphosate-resistant case of Avena fatua L. and Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne and alternative herbicide options for their control, PLoS One, 2022, vol. 17, no. 1, pp. 1–10. https://journals.plos.org/plosone/article?id=https://doi.org/10.1371/journal.pone.0262494. Cited January 10, 2023. 10.1371/journal.pone.0262494

  2. Bolaños-Jiménez, J., Uscanga-Mortera, E., Tafoya-Razo, J.A., et al., Biological efficacy of the inhibitor herbicides of acetyl coenzyme a carboxylase and acetolactate synthase and the presence of resistance in Echinochloa crus-galli (L.) Beauv, Agrociencia, 2018, vol. 52, no. 5, pp. 713–723.

    Google Scholar 

  3. Peppers, J., Gonçalves, C., and McElroy, J., Rate response of select grass weeds to pinoxaden, Weed Technol., 2020, vol. 34, no. 6, pp. 818–823. https://doi.org/10.1017/wet.2020.65

    Article  Google Scholar 

  4. Smith, A., Soltani, N., Kaastra, A., et al., Isoxaflutole and metribuzin interactions in isoxaflutole-resistant soybean, Weed Sci., 2019, vol. 67, no. 5, pp. 485–496. https://doi.org/10.1017/wsc.2019.25

    Article  Google Scholar 

  5. Lakra, K., Kumar., P.K., Husain, K., et al., Effect of irrigation, pre and post-emergence herbicides on Chenopodium  album in wheat (Triticum aestivum L.), J.  Pharmacogn. Phytochem., 2021, vol. 10, no. 1, pp. 2757–2760. https://doi.org/10.22271/phyto.2021.v10.i1am.13773

    Article  CAS  Google Scholar 

  6. Tewari, A.N., Rathi, K.S., and Singh, B., Efficacy of metsulfuron methyl on associated weeds in wheat (Triticum aestivum), Indian J. Agric. Sci., 1998, vol. 68, no. 2, pp. 121–122.

    CAS  Google Scholar 

  7. Singh, R.K., Verma, S.K., Prasad, S.K., et al., Effect of metsulfuron-methyl against broad leaf weeds in wheat (Triticum aestivum L. emend. Fiori and Paol.), J. Crop Weed, 2015, vol. 11, pp. 161–166.

    Google Scholar 

  8. Marcinkowska, K., Praczyk, T., Łęgosz, B., et al., Bio-ionic liquids as adjuvants for sulfonylurea herbicides, Weed Sci., 2018, vol. 66, no. 3, pp. 404–414. https://doi.org/10.1017/wsc.2017.85

    Article  Google Scholar 

  9. Cruz-Hipolito, H., Osuna, M.D., Dominguez-Valenzuela, J.A., et al., Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America, J. Agric. Food Chem., 2011, vol. 59, no. 13, pp. 7261–7267. https://doi.org/10.1021/jf201074k

    Article  CAS  PubMed  Google Scholar 

  10. Keith, B.K., Lehnhoff, E.A., Burns, E.E., et al., Characterisation of Avena fatua populations with resistance to multiple herbicides, Eur. Weed Res. Soc., 2015, vol. 55, no. 6, pp. 621–630. https://doi.org/10.1111/wre.12172

    Article  CAS  Google Scholar 

  11. Alwarnaidu Vijayarajan, V.B., Forristal, P.D., Cook, S.K., et al., First report on assessing the severity  of herbicide resistance to ACCase inhibitors   pinoxaden, propaquizafop and cycloxydim in six Avena fatua populations in Ireland, Agronomy, 2020, vol. 10, no. 9, pp. 1–13. https://www.mdpi.com/2073–4395/10/9/1362. Cited January 10, 2023. https://doi.org/10.3390/agronomy10091362

  12. Byrne, R., Vijaya Bhaskar, A.V., Spink, J., et al., The occurrence of herbicide-resistant Avena fatua (wild oats) populations to ACCase-inhibiting herbicides in Ireland, Ir. J. Agri. Food Res., 2021, vol. 60, no. 1, pp. 59–64. https://doi.org/10.15212/ijafr‑2020–0127

    CAS  Google Scholar 

  13. Fang, J., He, Z., Liu, T., et al., A novel mutation Asp‑2078-Glu in ACCase confers resistance to ACCase herbicides in barnyardgrass (Echinochloa crus-galli), Pestic. Biochem. Physiol., 2020, vol. 168, p. 104634. https://www.sciencedirect.com/science/article/abs/pii/S0048357520301292. Cited January 10, 2023. https://doi.org/10.1016/j.pestbp.2020.104634

  14. Yang, Q., Yang, X., Zhu, J., et al., Metabolic resistance to acetyl-CoA carboxylase-inhibiting herbicide cyhalofop-butyl in a Chinese Echinochloa crus-galli population, Agronomy, 2022, vol. 12, no. 2724, pp. 1–9. https://www.mdpi.com/2073–4395/12/11/2724. Cited January 10, 2023. https://doi.org/10.3390/agronomy12112724

  15. Soltani, N., Deen, B., Bowley, S., et al., Effects of pre-emergence applications of flufenacet plus metribuzin on weeds and soybean (Glycine max), Crop Prot., 2005, vol. 24, no. 6, pp. 507–511. https://doi.org/10.1016/j.cropro.2004.09.018

    Article  CAS  Google Scholar 

  16. Zhao, W., Huang, Y., and Hao, G., Pesticide informatics expands the opportunity for structure-based molecular design and optimization, Adv. Agrochem., 2022, vol. 1, no. 2, pp. 139–147. https://doi.org/10.1016/j.aac.2022.11.006

    Article  Google Scholar 

  17. Li, X., Yang, X., Zheng, X., et al., Review on structures of pesticide targets, Int. J. Mol. Sci., 2020, vol. 21, no. 19, pp. 1–6. https://www.mdpi.com/1422–0067/21/19/7144. Cited January 10, 2023. https://doi.org/10.3390/ijms21197144

  18. Gong, J., Liu, X., Cao, X., et al., PTID: an integrated web resource and computational tool for agrochemical discovery, Bioinformatics, 2013, vol. 29, no. 2, pp. 292–294. https://doi.org/10.1093/bioinformatics/bts651

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, K.A., Tzilivakis, J., Warner, D., et al., An international database for pesticide risk assessments and management, Hum. Ecol. Risk Assess., 2016, vol. 22, no. 4, pp. 1050–1064. https://doi.org/10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  20. Yu, L.P., Kim, Y.S., and Tong, L., Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden, Proc. Natl. Acad. Sci., 2010, vol. 21, no. 107, pp. 22072–22077. https://doi.org/10.1073/pnas.1012039107

    Article  Google Scholar 

  21. Kuk, Y.I. and Bugos, N.R., Cross-resistance profile of mesosulfuron-methyl-resistant Italian ryegrass in the southern United States, Pest Manage. Sci., 2007, vol. 63, no. 4, pp. 349–357.

    Article  CAS  Google Scholar 

  22. Dehaye, L., Alban, C., Job, C., et al., Kinetics of the two forms of acetyl-CoA carboxylase from Pisum sativum, Eur. J. Biochem., 1994, vol. 225, no. 3, pp. 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  23. Pandian, B.A., Sathishraj, R., Djanaguiraman, M., et al., Role of cytochrome P450 enzymes in plant stress response, Antioxidants, 2020, vol. 9, no. 5, pp. 1–15. https://www.mdpi.com/2076–3921/9/5/454. Cited January 10, 2023. https://doi.org/10.3390/antiox9050454

  24. Sutton, P., Richards, C., Buren, L., et al., Activity of mesotrione on resistant weeds in maize, Pest Manage. Sci., 2002, vol. 58, no. 9, pp. 981–984. https://doi.org/10.1002/ps.5

    Article  CAS  Google Scholar 

  25. Shen, J., Li, Y., Huang, X., et al., Expression of acetohydroxyacid synthase isozyme genes ilvBN, ilvGM, ilvIH and their resistance to AHAS-inhibitor herbicides, Sheng Wu Gong Cheng Xue Bao, 2009, vol. 25, no. 7, pp. 1007–1013.

    CAS  PubMed  Google Scholar 

  26. Jendele, L., Krivak, R., Skoda, P., et al., PrankWeb: a web server for ligand binding site prediction and visualization, Nucleic Acids Res., 2019, vol. 2, no. 47, pp. 345–349. https://doi.org/10.1093/nar/gkz424

    Article  CAS  Google Scholar 

  27. Morris, G.M., Huey, R., Lindstrom, W., et al., Autodock4  and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem., 2009, vol. 30, no. 16, pp. 2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schrödinger, L. and DeLano, W., PyMOL, 2020. http://www.pymol.org/pymol. Cited December 1, 2022.

  29. BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, San Diego: Dassault Syst., 2020. https://discover.3ds.com/discovery-studio-visualizer-download. Cited December 1, 2022.

  30. Garcia, M.D., Wang, J.-G., Lonhienne, T., et al., Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides, FEBS J., 2017, vol. 284, pp. 2037–2051. https://doi.org/10.1111/febs.14102

    Article  CAS  PubMed  Google Scholar 

  31. McCourt, J.A., Pang, S.S., Guddat, L.W., et al., Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase, Biochemistry, 2005, vol. 44, no. 7, pp. 2330–2338. https://doi.org/10.1021/bi047980a

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out in accordance with grant no. 220-2961-3099 within the framework of Decree of the Government of Russia no. 220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Pamirsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

In carrying out this work, all ethical standards were observed.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving humans and animals as objects.

Additional information

Translared by A. Ostyak

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pamirsky, I.E., Timkin, P.D., Timofeev, E.A. et al. A Study on the Molecular Mechanisms of Herbicide Binding with Target Proteins in Weeds Using In Silico Methods. Russ. Agricult. Sci. 49, 374–384 (2023). https://doi.org/10.3103/S1068367423040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367423040110

Keywords:

Navigation