Skip to main content

Advertisement

Log in

Protein Kinases and their Inhibitors Implications in Modulating Disease Progression

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Protein phosphorylation plays an important role in cellular pathways, including cell cycle regulation, metabolism, differentiation and survival. The protein kinase superfamily network consists of 518 members involved in intrinsic or extrinsic interaction processes. Protein kinases are divided into two categories based on their ability to phosphorylate tyrosine, serine, and threonine residues. The complexity of the system implies its vulnerability. Any changes in the pathways of protein kinases may be implicated in pathological processes. Therefore, they are regarded as having an important role in human diseases and represent prospective therapeutic targets. This article provides a review of the protein kinase inhibitors approved by the FDA. Finally, we summarize the mechanism of action of protein kinases, including their role in the development and progression of protein kinase-related roles in various pathological conditions and the future therapeutic potential of protein kinase inhibitors, along with links to protein kinase databases. Further clinical studies aimed at examining the sequence of protein kinase inhibitor availability would better utilize current protein kinase inhibitors in diseases. Additionally, this review may help researchers and biochemists find new potent and selective protein kinase inhibitors and provide more indications for using existing drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manning G, Whyte DB, Martinez R, Hunter T (2002) Pseudokinase Group. Science 80–:298:1912–1934

    Article  Google Scholar 

  2. Cicenas J, Zalyte E, Bairoch A, Gaudet P (2018) Kinases and cancer. Cancers (Basel) 10:1–7. https://doi.org/10.3390/cancers10030063

    Article  CAS  Google Scholar 

  3. Shchemelinin I, Šefc L, Nečas E (2006) Protein kinases, their function and implication in cancer and other diseases. Folia Biol (Praha) 52:81–101

    CAS  PubMed  Google Scholar 

  4. Subramani S, Jayapalan S, Kalpana R, Natarajan J (2013) HomoKinase: a curated database of human protein kinases. ISRN Comput Biol 2013:1–5. https://doi.org/10.1155/2013/417634

    Article  CAS  Google Scholar 

  5. Wang H, Qiu J, Liu H et al (2019) HKPocket: human kinase pocket database for drug design. BMC Bioinformatics 20:1–11. https://doi.org/10.1186/s12859-019-3254-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buzko O, Shokat KM (2002) A kinase sequence database: sequence alignments and family assignment. Bioinformatics 18:1274–1275. https://doi.org/10.1093/bioinformatics/18.9.1274

    Article  CAS  PubMed  Google Scholar 

  7. Bhanumathy KK, Balagopal A, Vizeacoumar FS et al (2021) Review protein tyrosine kinases: their roles and their targeting in leukemia. Cancers (Basel) 13:1–21. https://doi.org/10.3390/cancers13020184

    Article  CAS  Google Scholar 

  8. Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54(1):897–930

    Article  CAS  PubMed  Google Scholar 

  9. Yancopoulos GD, Klagsbrun M, Folkman J (1998) And growth factors: ephrins enter the fray at the border. Cell 93:661–664

    Article  CAS  PubMed  Google Scholar 

  10. Rathinaswamy MK, Burke JE (2020) Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease. Adv Biol Regul 75:100657. https://doi.org/10.1016/j.jbior.2019.100657

    Article  CAS  PubMed  Google Scholar 

  11. Lo WL, Shah NH, Ahsan N et al (2018) Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol 19:733–741. https://doi.org/10.1038/s41590-018-0131-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hubbard SR, Till JH (2004) Protein tyrosine kinase structure and function. Annu Rev Biochem 69(1):373–398

    Article  Google Scholar 

  13. Ramalho VD, Oliveira EB, Tani SM et al (2010) Mutations of Bruton’s tyrosine kinase gene in brazilian patients with X-linked agammaglobulinemia. Brazilian J Med Biol Res 43:910–913. https://doi.org/10.1590/S0100-879X2010007500079

    Article  CAS  Google Scholar 

  14. Masiakowski P, Carroll RD (1992) A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem 267:26181–26190. https://doi.org/10.1016/s0021-9258(18)35733-8

    Article  CAS  PubMed  Google Scholar 

  15. Tardif S, Dubé C, Chevalier S, Bailey JL (2001) Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod 65:784–792. https://doi.org/10.1095/biolreprod65.3.784

    Article  CAS  PubMed  Google Scholar 

  16. Shabani M, Naseri J, Shokri F (2015) Receptor tyrosine kinase-like orphan receptor 1: a novel target for cancer immunotherapy. Expert Opin Ther Targets 19:941–955. https://doi.org/10.1517/14728222.2015.1025753

    Article  CAS  PubMed  Google Scholar 

  17. Aghebati-Maleki L, Shabani M, Baradaran B et al (2017) Receptor tyrosine kinase-like orphan receptor 1 (ROR-1): an emerging target for diagnosis and therapy of chronic lymphocytic leukemia. Biomed Pharmacother 88:814–822. https://doi.org/10.1016/j.biopha.2017.01.070

    Article  CAS  PubMed  Google Scholar 

  18. Leroux AE, Schulze JO, Biondi RM (2018) AGC kinases, mechanisms of regulation ‎and innovative drug development. Semin Cancer Biol 48:1–17. https://doi.org/10.1016/j.semcancer.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Bogoyevitch MA, Fairlie DP (2007) A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding. Drug Discov Today 12:622–633. https://doi.org/10.1016/j.drudis.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  20. Hauge C, Antal TL, Hirschberg D et al (2007) Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 26:2251–2261. https://doi.org/10.1038/sj.emboj.7601682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287:31658–31665. https://doi.org/10.1074/jbc.R112.356485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maier LS, Bers DM (2007) Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640. https://doi.org/10.1016/j.cardiores.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Backs J, Backs T, Neef S et al (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347. https://doi.org/10.1073/pnas.0813013106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fulcher LJ, Sapkota GP (2020) Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 477:4603–4621. https://doi.org/10.1042/BCJ20200506

    Article  CAS  PubMed  Google Scholar 

  25. Richter J, Ullah K, Xu P et al (2015) Effects of altered expression and activity levels of CK1δ and ε on tumor growth and survival of colorectal cancer patients. Int J Cancer 136:2799–2810. https://doi.org/10.1002/ijc.29346

    Article  CAS  PubMed  Google Scholar 

  26. Knippschild U, Krüger M, Richter J et al (2014) The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol 4 MAY:1–33. https://doi.org/10.3389/fonc.2014.00096

    Article  Google Scholar 

  27. Cheong JK, Virshup DM (2011) Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 43:465–469. https://doi.org/10.1016/j.biocel.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  28. Meggio F, Deana AD, Ruzzene M et al (1995) Different susceptibility of protein kinases to staurosporine inhibition: kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 234:317–322. https://doi.org/10.1111/j.1432-1033.1995.317_c.x

    Article  CAS  PubMed  Google Scholar 

  29. Spinello Z, Fregnani A, Tubi LQ et al (2021) Targeting protein kinases in blood cancer: focusing on ck1α and ck2. Int J Mol Sci 22:1–17. https://doi.org/10.3390/ijms22073716

    Article  CAS  Google Scholar 

  30. Ferrarese A, Marin O, Bustos VH et al (2007) Chemical dissection of the APC repeat 3 multistep phosphorylation by the concerted action of protein kinases CK1 and GSK3. Biochemistry 46:11902–11910. https://doi.org/10.1021/bi701674z

    Article  CAS  PubMed  Google Scholar 

  31. Varjosalo M, Keskitalo S, VanDrogen A et al (2013) The protein Interaction Landscape of the human CMGC kinase Group. Cell Rep 3:1306–1320. https://doi.org/10.1016/j.celrep.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  32. Kannan N, Neuwald AF (2004) Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2α. Protein Sci 13:2059–2077. https://doi.org/10.1110/ps.04637904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker W, Sippl W (2011) Activation, regulation, and inhibition of DYRK1A. FEBS J 278:246–256. https://doi.org/10.1111/j.1742-4658.2010.07956.x

    Article  CAS  PubMed  Google Scholar 

  34. Ward P, Equinet L, Packer J, Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5:1–19. https://doi.org/10.1186/1471-2164-5-79

    Article  Google Scholar 

  35. Peixoto L, Chen F, Harb OS et al (2010) Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe 8:208–218. https://doi.org/10.1016/j.chom.2010.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garbers DL (1989) Guanylate cyclase, a cell surface receptor. J Biol Chem 264:9103–9106. https://doi.org/10.1016/s0021-9258(18)60495-8

    Article  CAS  PubMed  Google Scholar 

  37. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23:1921–1926. https://doi.org/10.1016/j.cellsig.2011.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schulz S, Chinkers M, Garbers PDL, Physiology M (2019) The guanylate cyclase/receptor family of proteins. FASEB J 3(9):2026–2035

    Article  Google Scholar 

  39. Moscat J, Diaz-Meco MT (2000) The atypical protein kinase cs: functional specificity mediated by specific protein adapters. EMBO Rep 1:399–403. https://doi.org/10.1093/embo-reports/kvd098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanev GK, de Graaf C, de Esch IJP et al (2019) The Landscape of atypical and eukaryotic protein kinases. Trends Pharmacol Sci 40:818–832. https://doi.org/10.1016/j.tips.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  41. Iimoto DS, Masliah E, DeTeresa R et al (1990) Aberrant casein kinase II in Alzheimer’s disease. Brain Res 507:273–280. https://doi.org/10.1016/0006-8993(90)90282-G

    Article  CAS  PubMed  Google Scholar 

  42. Gong C, Singh TJ, Grundke‐Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer Disease Brain. J Neurochem 61:921–927. https://doi.org/10.1111/j.1471-4159.1993.tb03603.x

    Article  CAS  PubMed  Google Scholar 

  43. Jin LW, Saitoh T (1995) Changes in protein kinases in Brain Aging and Alzheimer’s Disease: implications for drug therapy. Drugs Aging 6:136–149. https://doi.org/10.2165/00002512-199506020-00006

    Article  CAS  PubMed  Google Scholar 

  44. Popoli M, Brunello N, Perez J, Racagni G (2000) Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 74:21–33. https://doi.org/10.1046/j.1471-4159.2000.0740021.x

    Article  CAS  PubMed  Google Scholar 

  45. Perluigi M, Barone E, Di Domenico F, Butterfield DA (2016) Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta - Mol Basis Dis 1862:1871–1882. https://doi.org/10.1016/j.bbadis.2016.07.005

    Article  CAS  Google Scholar 

  46. Chen J, Li Y, Du C et al (2022) Protein kinases in cardiovascular diseases. Chin Med J (Engl) 135:557–570. https://doi.org/10.1097/CM9.0000000000001870

    Article  CAS  PubMed  Google Scholar 

  47. Fan Y, Cheng Y, Li Y et al (2020) Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint kinase 1 via activating mammalian target of Rapamycin C1/Ribosomal protein S6 kinase b-1 pathway. Circulation 141:1554–1569. https://doi.org/10.1161/CIRCULATIONAHA.119.040747

    Article  CAS  PubMed  Google Scholar 

  48. Force T, Pombo CM, Avruch JA et al (1996) Stress-activated protein kinases in cardiovascular disease. Circ Res 78(6):947–953

    Article  CAS  PubMed  Google Scholar 

  49. Kyaw M, Yoshizumi M, Tsuchiya K et al (2004) Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases. Acta Pharmacol Sin 25:977–985

    CAS  PubMed  Google Scholar 

  50. Javadov S, Jang S, Agostini B (2014) Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 144:202–225. https://doi.org/10.1016/j.pharmthera.2014.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cohen P (2009) Targeting protein kinases for the development of anti-inflammatory drugs. Curr Opin Cell Biol 21:317–324. https://doi.org/10.1016/j.ceb.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  52. Broom OJ, Widjaya B, Troelsen J et al (2009) Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol 158:272–280. https://doi.org/10.1111/j.1365-2249.2009.04033.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melnikova I, Golden J (2004) Targeting protein kinases. Nat Rev Drug Discov 3:993–994. https://doi.org/10.1038/nrd1582

    Article  CAS  PubMed  Google Scholar 

  54. Jacob T, Van den Broeke C, Favoreel HW (2011) Viral Serine/Threonine protein kinases. J Virol 85:1158–1173. https://doi.org/10.1128/jvi.01369-10

    Article  CAS  PubMed  Google Scholar 

  55. Leader DP (1993) Viral protein kinases and protein phosphatases. Pharmacol Ther 59:343–389. https://doi.org/10.1016/0163-7258(93)90075-O

    Article  CAS  PubMed  Google Scholar 

  56. Kawaguchi Y, Kato K (2003) Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 13:331–340. https://doi.org/10.1002/rmv.402

    Article  CAS  PubMed  Google Scholar 

  57. Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65. https://doi.org/10.1016/j.gde.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  58. Dummler B, Ohshiro K, Kumar R, Field J (2009) Pak protein kinases and their role in cancer. Cancer Metastasis Rev 28:51–63. https://doi.org/10.1007/s10555-008-9168-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11. https://doi.org/10.1016/j.gde.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  60. Lee H, Basso IN, Kim DDH (2021) Target spectrum of the BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Int J Hematol 113:632–641. https://doi.org/10.1007/s12185-021-03126-6

    Article  CAS  PubMed  Google Scholar 

  61. Shuch B, Srivasan R, Linehan WM, Bratslavsky G (2012) Sarcomatoid renal cell carcinoma: a comprehensive review of the biology and current treatment strategies. The Oncologist 17(1):46–54. https://doi.org/10.1634/theoncologist.2011-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brożyna AA, Adamczyk A et al (2023) Vemurafenib and Dabrafenib Downregulates RIPK4 Level. Cancers (Basel). https://doi.org/10.3390/cancers15030918

    Article  PubMed  Google Scholar 

  63. Han HS (2020) Alpelisib in the treatment of breast cancer: a short review on the emerging clinical data. Breast Cancer Targets Ther 12:251–258. https://doi.org/10.2147/BCTT.S219436

    Article  Google Scholar 

  64. Bilgin B, Sendur MAN, Şener Dede D et al (2017) A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer. Curr Med Res Opin 33:1559–1569. https://doi.org/10.1080/03007995.2017.1348344

    Article  CAS  PubMed  Google Scholar 

  65. Dunn B, PharmD D (2020) Larotrectinib and Entrectinib: TRK inhibitors for the treatment of Pediatric and adult patients with NTRK Gene Fusion. J Adv Pract Oncol 11:418–423. https://doi.org/10.6004/jadpro.2020.11.4.9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leclerc S, Garnier M, Hoessel R et al (2001) Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276:251–260. https://doi.org/10.1074/jbc.M002466200

    Article  CAS  PubMed  Google Scholar 

  67. Shamsi A, Anwar S, Mohammad T et al (2020) MARK4 inhibited by AChE inhibitors, donepezil and rivastigmine tartrate: Insights into Alzheimer’s disease therapy. Biomolecules. https://doi.org/10.3390/biom10050789

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kumar M, Bansal N (2018) Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res 351:4–16. https://doi.org/10.1016/j.bbr.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  69. Folch J, Petrov D, Ettcheto M et al (2015) Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev Neurother 15:587–596. https://doi.org/10.1586/14737175.2015.1045419

    Article  CAS  PubMed  Google Scholar 

  70. Crowley EL, Nezamololama N, Papp K, Gooderham MJ (2020) Abrocitinib for the treatment of atopic dermatitis. Expert Rev Clin Immunol 16:955–962. https://doi.org/10.1080/1744666X.2021.1828068

    Article  CAS  PubMed  Google Scholar 

  71. Galateanu B, Hudita A, Biru EI et al (2022) Applications of polymers for organ-on-chip technology in urology. Polym  https://doi.org/10.3390/polym14091668

    Article  Google Scholar 

  72. Rizzo A, Ricci AD, Brandi G (2021) Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: evidence to date and future perspectives. Expert Opin Investig Drugs 30:317–324. https://doi.org/10.1080/13543784.2021.1837774

    Article  CAS  PubMed  Google Scholar 

  73. Makawita S, Abou-Alfa K, Roychowdhury G S, et al (2020) Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: the PROOF 301 trial. Futur Oncol 16:2375–2384. https://doi.org/10.2217/fon-2020-0299

    Article  CAS  Google Scholar 

  74. Gelderblom H, Van De Sande M (2020) Pexidartinib: First approved systemic therapy for patients with tenosynovial giant cell tumor. Futur Oncol 16:2345–2356. https://doi.org/10.2217/fon-2020-0542

    Article  CAS  Google Scholar 

  75. Syed YY (2020) Zanubrutinib: first approval. Drugs 80:91–97. https://doi.org/10.1007/s40265-019-01252-4

    Article  CAS  PubMed  Google Scholar 

  76. Chaplin S (2022) Abrocitinib for the treatment of atopic dermatitis. Prescriber 33:31–33. https://doi.org/10.1002/psb.2011

    Article  PubMed Central  Google Scholar 

  77. Wang F, Sun L, Wang S et al (2020) Efficacy and safety of Tofacitinib, Baricitinib, and Upadacitinib for Rheumatoid Arthritis: a systematic review and Meta-analysis. Mayo Clin Proc 95:1404–1419. https://doi.org/10.1016/j.mayocp.2020.01.039

    Article  CAS  PubMed  Google Scholar 

  78. Arnold R, Vehns E, Randl H, Djabali K (2021) Baricitinib, a jak-stat inhibitor, reduces the cellular toxicity of the farnesyltransferase inhibitor lonafarnib in progeria cells. Int J Mol Sci. https://doi.org/10.3390/ijms22147474

    Article  PubMed  PubMed Central  Google Scholar 

  79. Drilon A, Siena S, Dziadziuszko R et al (2020) Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:261–270. https://doi.org/10.1016/S1470-2045(19)30690-4

    Article  CAS  PubMed  Google Scholar 

  80. Montazeri K, Bellmunt J (2020) Erdafitinib for the treatment of metastatic bladder cancer. Expert Rev Clin Pharmacol 13:1–6. https://doi.org/10.1080/17512433.2020.1702025

    Article  CAS  PubMed  Google Scholar 

  81. Mullally A, Hood J, Harrison C, Mesa R (2020) Fedratinib in myelofibrosis. Blood Adv 4:1792–1800. https://doi.org/10.1182/bloodadvances.2019000954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ni Y, Deng J, Bai H et al (2022) CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med 26:312–325. https://doi.org/10.1111/jcmm.17081

    Article  CAS  PubMed  Google Scholar 

  83. Lipsky A, Lamanna N (2020) Managing toxicities of Bruton tyrosine kinase inhibitors. Hematol (United States) 20:336–345. https://doi.org/10.1182/HEMATOLOGY.2020000118

    Article  Google Scholar 

  84. Moreira BP, Weber MHW, Haeberlein S et al (2022) Drug repurposing and de novo drug discovery of protein kinase inhibitors as new drugs against schistosomiasis. Molecules. https://doi.org/10.3390/molecules27041414

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Office of Doctoral Studies and Research (Prof. S.W. Akhtar and Prof. Syed Misbahul Hasan), Integral University for critically reviewing the manuscript and providing the manuscript number (MCN No.: IU/R&D/ 2023- MCN 0001946).

Funding

This work not received any external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM; Writing and original draft preparation: RA; Writing—review and editing, GN, AM; Supervision: MM, UA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohd Muazzam Khan.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the review, authorship and publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, R., Khan, M.M., Mishra, A. et al. Protein Kinases and their Inhibitors Implications in Modulating Disease Progression. Protein J 42, 621–632 (2023). https://doi.org/10.1007/s10930-023-10159-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10159-9

Keywords

Navigation