Skip to main content
Log in

Tumour Growth Mechanisms Determine Effectiveness of Adaptive Therapy in Glandular Tumours

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In cancer treatment, adaptive therapy holds promise for delaying the onset of recurrence through regulating the competition between drug-sensitive and drug-resistant cells. Adaptive therapy has been studied in well-mixed models assuming free mixing of all cells and spatial models considering the interactions of single cells with their immediate adjacent cells. Both models do not reflect the spatial structure in glandular tumours where intra-gland cellular interaction is high, while inter-gland interaction is limited. Here, we use mathematical modelling to study the effects of adaptive therapy on glandular tumours that expand using either glandular fission or invasive growth. A two-dimensional, lattice-based model of sites containing sensitive and resistant cells within individual glands is developed to study the evolution of glandular tumour cells under continuous and adaptive therapies. We found that although both growth models benefit from adaptive therapy’s ability to prevent recurrence, invasive growth benefits more from it than fission growth. This difference is due to the migration of daughter cells into neighboring glands that is absent in fission but present in invasive growth. The migration resulted in greater mixing of cells, enhancing competition induced by adaptive therapy. By varying the initial spatial spread and location of the resistant cells within the tumour, we found that modifying the conditions within the resistant cells containing glands affect both fission and invasive growth. However, modifying the conditions surrounding these glands affect invasive growth only. Our work reveals the interplay between growth mechanism and tumour topology in modulating the effectiveness of cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/CAAC.21654

    Article  PubMed  Google Scholar 

  2. Holohan C, Van Schaeybroeck S, Longley DB et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  3. Marusyk A, Janiszewska M, Polyak K (2020) Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37:471. https://doi.org/10.1016/J.CCELL.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vineis P, Berwick M (2006) The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 35:1151–1159. https://doi.org/10.1093/IJE/DYL185

    Article  PubMed  Google Scholar 

  5. Juliano SA (2007) Population dynamics. J Am Mosq Control Assoc 23:265. https://doi.org/10.2987/8756-971x(2007)23[265:pd]2.0.co;2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kam Y, Das T, Tian H et al (2015) Sweat but no gain: inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges.” Int J Cancer 136:E188–E196. https://doi.org/10.1002/IJC.29158

    Article  CAS  PubMed  Google Scholar 

  7. Herrmann NC, Stroud JT, Losos JB (2021) The evolution of ‘ecological release’ into the 21st century. Trends Ecol Evol 36:206–215. https://doi.org/10.1016/j.tree.2020.10.019

    Article  PubMed  Google Scholar 

  8. Melander AL (1914) Can insects become resistant to sprays? J Econ Entomol 7:167–173. https://doi.org/10.1093/JEE/7.2.167

    Article  Google Scholar 

  9. Abel zur Wiesch P, Kouyos R, Abel S, et al (2014) Cycling empirical antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog 10:e1004225. https://doi.org/10.1371/JOURNAL.PPAT.1004225

    Article  PubMed  Google Scholar 

  10. Gatenby RA, Silva AS, Gillies RJ et al (2009) Adaptive therapy. Cancer Res 69:4894–4903. https://doi.org/10.1158/0008-5472.CAN-08-3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bacevic K, Noble R, Soffar A et al (2017) Spatial competition constrains resistance to targeted cancer therapy. Nat Commun 8:1–15. https://doi.org/10.1038/s41467-017-01516-1

    Article  ADS  CAS  Google Scholar 

  12. Enriquez-Navas PM, Kam Y, Das T et al (2016) Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci Transl Med 8(327):327ra24. https://doi.org/10.1126/SCITRANSLMED.AAD7842

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smalley I, Kim E, Li J et al (2019) Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. EBioMedicine 48:178–190. https://doi.org/10.1016/j.ebiom.2019.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Acar A, Nichol D, Fernandez-Mateos J et al (2020) Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat Commun 11:1–14. https://doi.org/10.1038/s41467-020-15596-z

    Article  CAS  Google Scholar 

  15. Viossat Y, Noble R (2021) A theoretical analysis of tumour containment. Nat Ecol Evol 5:826–835. https://doi.org/10.1038/s41559-021-01428-w

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin RB, Fisher ME, Minchin RF et al (1992) Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math Biosci 110:201–219. https://doi.org/10.1016/0025-5564(92)90038-X

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Cunningham JJ, Brown JS et al (2017) Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-01968-5

    Article  CAS  Google Scholar 

  18. West J, Ma Y, Newton PK (2018) Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J Theor Biol 455:249–260. https://doi.org/10.1016/J.JTBI.2018.07.028

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  19. Gallaher JA, Enriquez-Navas PM, Luddy KA et al (2018) Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res 78:2127–2139. https://doi.org/10.1158/0008-5472.CAN-17-2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Italia M, Dercole F, Lucchetti R (2022) Optimal chemotherapy counteracts cancer adaptive resistance in a cell-based, spatially-extended, evolutionary model. Phys Biol. 19(2): 026004 https://doi.org/10.1088/1478-3975/AC509C

    Article  PubMed  Google Scholar 

  21. Akhmetzhanov AR, Kim JW, Sullivan R et al (2019) Modelling bistable tumour population dynamics to design effective treatment strategies. J Theor Biol 474:88–102. https://doi.org/10.1016/J.JTBI.2019.05.005

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  22. Weiner BG, Posfai A, Wingreen NS (2019) Spatial ecology of territorial populations. Proc Natl Acad Sci USA 116:17874–17879. https://doi.org/10.1073/PNAS.1911570116/SUPPL_FILE/PNAS.1911570116.SAPP.PDF

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Apps CD, McLellan BN, Woods JG (2006) Landscape partitioning and spatial inferences of competition between black and grizzly bears. Ecography 29:561–572. https://doi.org/10.1111/J.0906-7590.2006.04564.X

    Article  ADS  Google Scholar 

  24. Lynch MD, Lynch CNS, Craythorne E et al (2017) Spatial constraints govern competition of mutant clones in human epidermis. Nat Commun 8:1–11. https://doi.org/10.1038/s41467-017-00993-8

    Article  CAS  Google Scholar 

  25. Lloyd DP, Allen RJ (2015) Competition for space during bacterial colonization of a surface. J R Soc Interface. https://doi.org/10.1098/RSIF.2015.0608

    Article  PubMed  PubMed Central  Google Scholar 

  26. Noble R, Burri D, Le Sueur C et al (2021) Spatial structure governs the mode of tumour evolution. Nat Ecol Evol 6:207–217. https://doi.org/10.1038/s41559-021-01615-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Waclaw B, Bozic I, Pittman ME et al (2015) A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525(7568):261–264. https://doi.org/10.1038/nature14971

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strobl MAR, Gallaher J, West J et al (2022) Spatial structure impacts adaptive therapy by shaping intra-tumoral competition. Commun Med 2:1–18. https://doi.org/10.1038/s43856-022-00110-x

    Article  CAS  Google Scholar 

  29. Makki J (2015) Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol 8:23. https://doi.org/10.4137/CPATH.S31563

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fleming M, Ravula S, Tatishchev SF et al (2012) Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 3:153. https://doi.org/10.3978/J.ISSN.2078-6891.2012.030

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32:605–644. https://doi.org/10.1016/J.CCM.2011.09.001

    Article  PubMed  Google Scholar 

  32. Ryser MD, Min BH, Siegmund KD et al (2018) Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc Natl Acad Sci USA 115:5774–5779. https://doi.org/10.1073/PNAS.1716552115/-/DCSUPPLEMENTAL

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun R, Hu Z, Sottoriva A et al (2017) Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat Genet 49(7):1015–1024. https://doi.org/10.1038/ng.3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pandya P, Orgaz JL, Sanz-Moreno V (2017) Modes of invasion during tumour dissemination. Mol Oncol 11:5–27. https://doi.org/10.1002/1878-0261.12019

    Article  PubMed  Google Scholar 

  35. Lugli A, Zlobec I, Berger MD et al (2020) Tumour budding in solid cancers. Nat Rev Clin Oncol 18(2):101–115. https://doi.org/10.1038/s41571-020-0422-y

    Article  PubMed  Google Scholar 

  36. Agyingi E, Wakabayashi L, Wiandt T et al (2018) Eden model simulation of re-epithelialization and angiogenesis of an epidermal wound. Processes 6:207. https://doi.org/10.3390/PR6110207

    Article  Google Scholar 

  37. Sun R, Hu Z, Sottoriva A et al (2017) Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat Genet 49:1015–1024. https://doi.org/10.1038/NG.3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sottoriva A, Kang H, Ma Z et al (2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47(3):209–216. https://doi.org/10.1038/ng.3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tubiana M (1989) Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol 28:113–121. https://doi.org/10.3109/02841868909111193

    Article  CAS  PubMed  Google Scholar 

  40. Sottoriva A, Spiteri I, Shibata D et al (2013) Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. Cancer Res 73:41–49. https://doi.org/10.1158/0008-5472.CAN-12-2273

    Article  CAS  PubMed  Google Scholar 

  41. Rew DA, Wilson GD, Taylor I et al (1991) Proliferation characteristics of human colorectal carcinomas measured in vivo. Br J Surg 78:60–66. https://doi.org/10.1002/BJS.1800780120

    Article  CAS  PubMed  Google Scholar 

  42. Friesen DE, Baracos VE, Tuszynski JA (2015) Modeling the energetic cost of cancer as a result of altered energy metabolism: Implications for cachexia. Theor Biol Med Model 12:1–18. https://doi.org/10.1186/S12976-015-0015-0/FIGURES/7

    Article  Google Scholar 

  43. Chen X, Chen S, Yu D (2020) Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites 10:1–15. https://doi.org/10.3390/METABO10070289

    Article  Google Scholar 

  44. Strobl MAR, West J, Viossat Y et al (2021) Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res 81:1135. https://doi.org/10.1158/0008-5472.CAN-20-0806

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Brady SW, Ma X et al (2020) Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 135:41. https://doi.org/10.1182/BLOOD.2019002220

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim BJ, Forbes NS (2008) Single cell analysis demonstrates how nutrient deprivation creates apoptotic and quiescent cell populations in tumor cylindroids. Biotechnol Bioeng 101:797. https://doi.org/10.1002/BIT.21985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

There is no funding source for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhen Tan.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Video 1: Cell growth dynamics in glands at fission growth under adaptive therapy at \({g}_{r}={0.8g}_{s}\). (AVI 1749 KB)

Supplementary Video 2: Cell growth dynamics in glands at fission growth under adaptive therapy at \({g}_{r}={g}_{s}\). (AVI 574 KB)

Supplementary Video 3: Cell growth dynamics in glands at invasive growth under adaptive therapy at \({g}_{r}=0.8{g}_{s}\). (AVI 1188 KB)

Supplementary Video 4: Cell growth dynamics in glands at invasive growth under adaptive therapy at \({g}_{r}={g}_{s}\). (AVI 3628 KB)

Supplementary Video 5: Cell growth dynamics in glands in two clusters with \({l}_{sep}=10\) at invasive growth under adaptive therapy. (AVI 3699 KB)

Supplementary Video 6: Cell growth dynamics in glands in two clusters with \({l}_{sep}=40\) at invasive growth under adaptive therapy (AVI 2931 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, R.Z. Tumour Growth Mechanisms Determine Effectiveness of Adaptive Therapy in Glandular Tumours. Interdiscip Sci Comput Life Sci 16, 73–90 (2024). https://doi.org/10.1007/s12539-023-00586-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00586-8

Keywords

Navigation