Skip to main content
Log in

Scope of JAK Inhibitors in Children: Recent Evidence and Way Forward

  • Leading Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Over the last decade, there has been an increase in the use of targeted therapy using small molecules such as Janus kinase (JAK) inhibitors. Since the introduction of ruxolitinib, the first non-selective JAK inhibitor approved for use in myelofibrosis, many other JAK inhibitors have been tried in a wide spectrum of immune-mediated disorders. Although various trials have shown the promising efficacy of JAK inhibitors in immune-mediated inflammatory disorders (IMIDs), there is a growing concern over the major cardiovascular events and malignancies associated with the use of these molecules in older adults, particularly those over 65 years of age. In this review, we aim to discuss the immunology of the JAK-STAT pathway, the scope of use of JAK inhibitors, and their safety in paediatric practice. Here, we discuss high-quality evidence favouring the use of JAK inhibitors in children with juvenile idiopathic arthritis (JIA) who are refractory to one or more conventional/biological disease-modifying drugs, demonstrated in two randomised controlled trials (RCTs). In addition to JIA, there are reports favouring the role of JAK inhibitors in other IMIDs such as systemic-onset JIA and interferonopathies. Thus far, the existing literature suggests an acceptable safety profile for JAK inhibitors in children. With the expanding scope of JAK inhibitors in a wide range of IMIDs in children, there is a significant need for long-term close vigilance for any potential harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Gadina et al. [8] with copyright permission obtained from Oxford University Press, license number 5599371098493)

Similar content being viewed by others

References

  1. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(02):ii111–5.

    Article  PubMed  Google Scholar 

  3. chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf [Internet]. [cited 2023 Jul 25]. https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf. Accessed 2 Sept 2022.

  4. Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994;370(6485):151–3.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25.

    Article  CAS  PubMed  Google Scholar 

  6. JAKs and STATs in Immunity, Immunodeficiency, and Cancer|NEJM [Internet]. [cited 2023 Mar 27]. https://doi.org/10.1056/NEJMra1202117

  7. Liongue C, Ward AC. Evolution of the JAK-STAT pathway. JAKSTAT. 2013;2(1): e22756.

    PubMed  PubMed Central  Google Scholar 

  8. Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford). 2019;58(Suppl 1):i4-16.

    Article  CAS  PubMed  Google Scholar 

  9. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  10. Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leonard WJ, Noguchi M, Russell SM, McBride OW. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor γ chain as a common γ chain, γc. Immunol Rev. 1994;138(1):61–86.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka Y, Maeshima Y, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71(Suppl 2):i70–4.

    Article  CAS  PubMed  Google Scholar 

  13. Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019;58(6):953–62.

    Article  CAS  PubMed  Google Scholar 

  14. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  15. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  16. Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and t lymphocyte activation in mice lacking Jak3. Science. 1995;270(5237):794–7.

    Article  CAS  PubMed  Google Scholar 

  17. Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.

    Article  CAS  PubMed  Google Scholar 

  18. Mutation of Jak3 in a Patient with SCID: Essential Role of Jak3 in Lymphoid Development | Science [Internet]. 2023. Doi: https://doi.org/10.1126/science.270.5237.797.

  19. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID)|Nature [Internet]. [cited 2023 Mar 27]. https://www.nature.com/articles/377065a0. Accessed 2 Sept 2022.

  20. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

    Article  CAS  PubMed  Google Scholar 

  21. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schinocca C, Rizzo C, Fasano S, Grasso G, Barbera LL, Ciccia F, et al. Role of the IL-23/IL-17 Pathway in rheumatic diseases: an overview. Front Immunol [Internet]. 2021 [cited 2023 Mar 27];12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937623/. Accessed 2 Sept 2022.

  23. Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clarke SLN, Ramanan AV. Tofacitinib in juvenile idiopathic arthritis. The Lancet. 2021;398(10315):1943–5.

    Article  CAS  Google Scholar 

  25. Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, et al. Impact of JAK inhibitors in pediatric patients with STAT1 Gain of Function (GOF) mutations—10 children and review of the literature. J Clin Immunol. 2022;42(5):1071–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barton VR, Toussi A, Awasthi S, Kiuru M. Treatment of pediatric alopecia areata: a systematic review. J Am Acad Dermatol. 2022;86(6):1318–34.

    Article  CAS  PubMed  Google Scholar 

  27. Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and safety of janus kinase inhibitors in type I interferon-mediated monogenic autoinflammatory disorders: a scoping review. Dermatol Ther (Heidelb). 2021;11(3):733–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu E, Aslam N, Nigam G, Limdi JK. Tofacitinib and newer JAK inhibitors in inflammatory bowel disease—where we are and where we are going. Drugs Context. 2022;11:2021-11–2024.

    Article  Google Scholar 

  29. Ruperto N, Brunner HI, Synoverska O, Ting TV, Mendoza CA, Spindler A, et al. Tofacitinib in juvenile idiopathic arthritis: a double-blind, placebo-controlled, withdrawal phase 3 randomised trial. The Lancet. 2021;398(10315):1984–96.

    Article  CAS  Google Scholar 

  30. Ramanan AV, Quartier P, Okamoto N, Foeldvari I, Spindler A, Fingerhutová Š, et al. Baricitinib in juvenile idiopathic arthritis: an international, phase 3, randomised, double-blind, placebo-controlled, withdrawal, efficacy, and safety trial. Lancet. 2023;402(10401):555–70.

  31. Gillard L, Pouchot J, Cohen-Aubart F, Koné-Paut I, Mouterde G, Michaud M, et al. JAK inhibitors in difficult-to-treat adult-onset Still’s disease and systemic-onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2023;62(4):1594–604.

    Article  PubMed  Google Scholar 

  32. He T, Xia Y, Luo Y, Yang J. JAK inhibitors in systemic juvenile idiopathic arthritis. Front Pediatr. 2023;20(11):1134312.

    Article  Google Scholar 

  33. Eli Lilly and Company. Randomized, double-blind, placebo-controlled, withdrawal, safety and efficacy study of oral baricitinib in patients from 1 year to less than 18 years old with systemic juvenile idiopathic arthritis [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT04088396. Available from: https://clinicaltrials.gov/ct2/show/NCT04088396

  34. Pfizer. Efficacy, safety, tolerability and pharmacokinetics of tofacitinib for treatment of systemic juvenile idiopathic arthritis (SJIA) with active systemic features in children and adolescent subjects [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT03000439. Available from: https://clinicaltrials.gov/ct2/show/NCT03000439

  35. Su Y, Tao T, Liu X, Su W. JAK-STAT signaling pathway in non-infectious uveitis. Biochem Pharmacol. 2022;1(204): 115236.

    Article  Google Scholar 

  36. Miserocchi E, Giuffrè C, Cornalba M, Pontikaki I, Cimaz R. JAK inhibitors in refractory juvenile idiopathic arthritis-associated uveitis. Clin Rheumatol. 2020;39(3):847–51.

    Article  PubMed  Google Scholar 

  37. Ramanan AV, Guly CM, Keller SY, Schlichting DE, de Bono S, Liao R, et al. Clinical effectiveness and safety of baricitinib for the treatment of juvenile idiopathic arthritis-associated uveitis or chronic anterior antinuclear antibody-positive uveitis: study protocol for an open-label, adalimumab active-controlled phase 3 clinical trial (JUVE-BRIGHT). Trials. 2021;9(22):689.

    Article  Google Scholar 

  38. Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol. 2021;19(1):146.

    Article  Google Scholar 

  39. Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222–31.

    Article  CAS  PubMed  Google Scholar 

  40. Petri M, Bruce IN, Dörner T, Tanaka Y, Morand EF, Kalunian KC, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). The Lancet. 2023;401(10381):1011–9.

    Article  CAS  Google Scholar 

  41. König N, Fiehn C, Wolf C, Schuster M, Costa EC, Tüngler V, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468–72.

    Article  PubMed  Google Scholar 

  42. Constant BD, Baldassano R, Kirsch J, Mitchel EB, Stein R, Albenberg L. Tofacitinib salvage therapy for children hospitalized for corticosteroid- and biologic-refractory ulcerative colitis. J Pediatr Gastroenterol Nutr. 2022;75(6):724–30.

    Article  CAS  PubMed  Google Scholar 

  43. EMA. European Medicines Agency. 2022 [cited 2023 Mar 26]. EMA recommends measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. https://www.ema.europa.eu/en/news/ema-recommends-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic. Accessed 2 Sept 2022.

  44. Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor PC, Weinblatt ME, Burmester GR, Rooney TP, Witt S, Walls CD, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019;71(7):1042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, et al. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS SAVI and AGS. Ann Rheum Dis. 2022;81(5):601–13.

    Article  PubMed  Google Scholar 

  47. Reoma LB, Trindade CJ, Monaco MC, Solis J, Montojo MG, Vu P, et al. Fatal encephalopathy with wild-type JC virus and ruxolitinib therapy. Ann Neurol. 2019;86(6):878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369(2):197–8.

    Article  CAS  PubMed  Google Scholar 

  49. Smolen JS, Genovese MC, Takeuchi T, Hyslop DL, Macias WL, Rooney T, et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  50. Nash P, Kerschbaumer A, Dörner T, Dougados M, Fleischmann RM, Geissler K, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: a consensus statement. Ann Rheum Dis. 2021;80(1):71–87.

    Article  CAS  PubMed  Google Scholar 

  51. McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. The Lancet. 2021;398(10302):803–16.

    Article  Google Scholar 

  52. American College of Rheumatology Guidance for COVID‐19 vaccination in patients with rheumatic and musculoskeletal diseases_Version 5.html

  53. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685–99.

    Article  CAS  PubMed  Google Scholar 

  54. Bieber T, Feist E, Irvine AD, Harigai M, Haladyj E, Ball S, et al. A review of safety outcomes from clinical trials of baricitinib in rheumatology, dermatology and COVID-19. Adv Ther. 2022;39(11):4910–60.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bagri NK, Kumar S, Ramanan AV. Conception of National Biologics Registry for pediatric rheumatology: need of the hour and the way forward. Indian Pediatr. 2022;59(12):913–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tofacitinib (CP‐690,550) in patients with rheumatoid arthritis receiving methotrexate: Twelve‐month data from a twenty‐four–month phase III randomized radiographic study [Internet]. [https://doi.org/10.1002/art.37816

  57. Sandborn WJ, Su C, Sands BE, D’Haens GR, Vermeire S, Schreiber S, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376(18):1723–36.

    Article  CAS  PubMed  Google Scholar 

  58. Banfield C, Scaramozza M, Zhang W, Kieras E, Page KM, Fensome A, et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol. 2018;58(4):434–47.

    Article  CAS  PubMed  Google Scholar 

  59. Schmieder GJ, Draelos ZD, Pariser DM, Banfield C, Cox L, Hodge M, et al. Efficacy and safety of the Janus kinase 1 inhibitor PF-04965842 in patients with moderate-to-severe psoriasis: phase II, randomized, double-blind, placebo-controlled study. Br J Dermatol. 2018;179(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  60. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525–36.

    Article  CAS  PubMed  Google Scholar 

  61. Mease P, Hall S, FitzGerald O, Van Der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–50.

    Article  CAS  PubMed  Google Scholar 

  62. Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021;80(8):1004–13.

    Article  CAS  PubMed  Google Scholar 

  63. Smolen JS, Xie L, Jia B, Taylor PC, Burmester G, Tanaka Y, et al. Efficacy of baricitinib in patients with moderate-to-severe rheumatoid arthritis with 3 years of treatment: results from a long-term study. Rheumatology (Oxford). 2020;60(5):2256–66.

    Article  Google Scholar 

  64. Morand EF, Vital EM, Petri M, van Vollenhoven R, Wallace DJ, Mosca M, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-I). The Lancet. 2023;401(10381):1001–10.

    Article  CAS  Google Scholar 

  65. Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med. 2021;384(9):795–807.

    Article  CAS  PubMed  Google Scholar 

  67. Papp KA, Menter MA, Raman M, Disch D, Schlichting DE, Gaich C, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase ( JAK ) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266–76.

    Article  CAS  PubMed  Google Scholar 

  68. Reich K, Kabashima K, Peris K, Silverberg JI, Eichenfield LF, Bieber T, et al. Efficacy and safety of baricitinib combined with topical corticosteroids for treatment of moderate to severe atopic dermatitis. JAMA Dermatol. 2020;156(12):1–11.

    Article  PubMed Central  Google Scholar 

  69. King B, Ohyama M, Kwon O, Zlotogorski A, Ko J, Mesinkovska NA, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386(18):1687–99.

    Article  CAS  PubMed  Google Scholar 

  70. Torrelo A, Rewerska B, Galimberti M, Paller A, Yang CY, Prakash A, et al. Efficacy and safety of baricitinib in combination with topical corticosteroids in paediatric patients with moderate-to-severe atopic dermatitis with an inadequate response to topical corticosteroids: results from a phase III, randomized, double-blind, placebo-controlled study (BREEZE-AD PEDS). Br J Dermatol. 2023;189(1):23–32.

    Article  PubMed  Google Scholar 

  71. Smolen JS, Pangan AL, Emery P, Rigby W, Tanaka Y, Vargas JI, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. The Lancet. 2019;393(10188):2303–11.

    Article  Google Scholar 

  72. Fleischmann R, Pangan AL, Song IH, Mysler E, Bessette L, Peterfy C, et al. Upadacitinib versus placebo or adalimumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III, double-blind randomized controlled trial. Arthritis Rheumatol. 2019;71(11):1788–800.

    Article  CAS  PubMed  Google Scholar 

  73. van der Heijde D, Song IH, Pangan AL, Deodhar A, van den Bosch F, Maksymowych WP, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. The Lancet. 2019;394(10214):2108–17.

    Article  Google Scholar 

  74. Mease PJ, Lertratanakul A, Anderson JK, Papp K, Van den Bosch F, Tsuji S, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2021;80(3):312–20.

    Article  CAS  PubMed  Google Scholar 

  75. McInnes IB, Anderson JK, Magrey M, Merola JF, Liu Y, Kishimoto M, et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N Engl J Med. 2021;384(13):1227–39.

    Article  CAS  PubMed  Google Scholar 

  76. Simpson EL, Papp KA, Blauvelt A, Chu CY, Hong HCHO, Katoh N, et al. Efficacy and safety of upadacitinib in patients with moderate to severe atopic dermatitis. JAMA Dermatol. 2022;158(4):404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Paller AS, Ladizinski B, Mendes-Bastos P, Siegfried E, Soong W, Prajapati VH, et al. Efficacy and safety of upadacitinib treatment in adolescents with moderate-to-severe atopic dermatitis. JAMA Dermatol. 2023;159(5):526–35.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Genovese MC, Kalunian K, Gottenberg JE, Mozaffarian N, Bartok B, Matzkies F, et al. Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy. JAMA. 2019;322(4):315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Combe B, Kivitz A, Tanaka Y, van der Heijde D, Simon JA, Baraf HSB, et al. Filgotinib versus placebo or adalimumab in patients with rheumatoid arthritis and inadequate response to methotrexate: a phase III randomised clinical trial. Ann Rheum Dis. 2021;80(7):848–58.

    Article  CAS  PubMed  Google Scholar 

  80. Feagan BG, Danese S, Loftus EV, Vermeire S, Schreiber S, Ritter T, et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. The Lancet. 2021;397(10292):2372–84.

    Article  CAS  Google Scholar 

  81. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98.

    Article  CAS  PubMed  Google Scholar 

  82. Keenan C, Nichols KE, Albeituni S. Use of the JAK inhibitor ruxolitinib in the treatment of hemophagocytic lymphohistiocytosis. Front Immunol. 2021;16(12): 614704.

    Article  Google Scholar 

  83. VX‐509 (Decernotinib), an Oral Selective JAK‐3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. https://doi.org/10.1002/art.39473.

  84. Ramírez-Marín HA, Tosti A. Evaluating the therapeutic potential of ritlecitinib for the treatment of alopecia areata. Drug Des Devel Ther. 2022;17(16):363–74.

    Article  Google Scholar 

  85. Armstrong AW, Gooderham M, Warren RB, Papp KA, Strober B, Thaçi D, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  86. Mease PJ, Deodhar AA, van der Heijde D, Behrens F, Kivitz AJ, Neal J, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81(6):815–22.

    Article  CAS  PubMed  Google Scholar 

  87. Huang Z, Lee PY, Yao X, Zheng S, Li T. Tofacitinib treatment of refractory systemic juvenile idiopathic arthritis. Pediatrics. 2019;143(5): e20182845.

    Article  PubMed  Google Scholar 

  88. Vanderver A, Adang L, Gavazzi F, McDonald K, Helman G, Frank DB, et al. Janus kinase inhibition in the Aicardi-Goutières Syndrome. N Engl J Med. 2020;383(10):986–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Successful remission induction in refractory familial hemophagocytic lymphohistiocytosis with ruxolitinib as a bridge to hematopoietic stem cell transplantation-Ramanan-2020. Pediatric Blood & Cancer. https://doi.org/10.1002/pbc.28071.

  90. Wei A, Ma H, Li Z, Zhang L, Zhang Q, Wang D, et al. Short-term effectiveness of ruxolitinib in the treatment of recurrent or refractory hemophagocytic lymphohistiocytosis in children. Int J Hematol. 2020;112(4):568–76.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Q, Wei A, Ma HH, Zhang L, Lian HY, Wang D, et al. A pilot study of ruxolitinib as a front-line therapy for 12 children with secondary hemophagocytic lymphohistiocytosis. Haematologica. 2021;106(7):1892–901.

    Article  CAS  PubMed  Google Scholar 

  92. Uygun V, Karasu G, Daloğlu H, Öztürkmen S, Kılıç SÇ, Yalçın K, et al. Ruxolitinib salvage therapy is effective for steroid-refractory graft-versus-host disease in children: a single-center experience. Pediatr Blood Cancer Internet. 2020. https://doi.org/10.1002/pbc.28190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ramanan.

Ethics declarations

Conflicts of Interest

AVR was involved in the baricitinib study and is the corresponding author of the manuscript. AVR has received speaker fees/honoraria/consulting fees from Abbvie, Astra Zeneca, Eli Lilly, Pfizer, Roche, Novartis, UCB and SOBI.

Funding

This work was supported in parts by grants from the NIHR (CC).

Ethics Approval

The nature of the work did not require any ethical approval.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

No additional data is available for this manuscript.

Author Contributions

NKB: concept, design, literature review, drafting and editing of the manuscript. CC: concept, literature review, drafting and editing of the manuscript. AVR: concept, design, reviewed the draft for intellectual comments. All authors approved the final version of the draft.

Code availability

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagri, N.K., Chew, C. & Ramanan, A.V. Scope of JAK Inhibitors in Children: Recent Evidence and Way Forward. Pediatr Drugs 25, 635–647 (2023). https://doi.org/10.1007/s40272-023-00594-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-023-00594-7

Navigation