Skip to main content
Log in

Effect of Oxidation Temperature on the Crystalline Phase of Polypropylene in Composites with Single-Walled Carbon Nanotubes

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The effect of thermal oxidation on the crystalline phase of polypropylene in composites with single-walled carbon nanotubes has been studied. The composites are synthesized in propylene bulk using a homogeneous catalytic system rac-Me2Si(2-Me-4PhInd)2ZrCl2, activated by methylaluminoxane. The effect of thermal oxidation on thermophysical characteristics (the heat of melting and the melting temperature) measured by DSC and changes occurring in the polymer investigated by IR spectroscopy is studied. Changes in the structure of PP during thermo-oxidative degradation are studied by DSC at 140 and 170°С, that is, before and after melting of the samples. It is shown that the oxidized PP in the composites possesses a higher degree of crystallinity and a more perfect structure than the pure PP. At 170°С the effect of thermo-oxidative stabilization is observed only at low filling degrees (up to 3 wt %), in agreement with the TGA data. An analysis of IR spectra demonstrates that the presence of nanotubes in PP‑based composites during oxidation slows down the formation of oxygen-containing groups in the polymer. The conclusion is made that carbon nanotubes inhibit the thermal oxidation of polypropylene in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Z. Fang, P. Song, L. Tong, and Z. Guo, Thermochim. Acta 473, 106 (2008).

    Article  CAS  Google Scholar 

  2. J. Yang, Y. Huang, Y. Lv, P. Zhao, Q. Yang, and G. Li, J. Mater. Chem. A 1, 11184 (2013).

    Article  CAS  Google Scholar 

  3. T. G. Gopakumar and D. J. Y. S. Page, Polym. Eng. Sci. 44, 1162 (2004).

    Article  CAS  Google Scholar 

  4. Y.-S. Jun, J. G. Um, G. Jiang, and A. Yu, J. Polym. Sci., Part B: Polym. Lett. 12, 885 (2018).

    Article  CAS  Google Scholar 

  5. Ya. P. Kapachauskene, R. P. Yurevichene, and Yu. A. Shlyapnikov, Kinet. Katal. 8, 212 (1967).

    Google Scholar 

  6. R. Verdejo, M. M. Bernal, L. J. Romasanta, and M. A. Lopez Manchado, J. Mater. Chem. 21, 3301 (2011).

    Article  CAS  Google Scholar 

  7. Yu. A. Shlyapnikov, S. G. Kiryushkin, and A. P. Mar’in, Antioxidant Stabilization of Polymers (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  8. Y. He, D. Fan, J. Chen, J. Zhao, Y. Lv, Y. Huang, G. Li, and M. Kong, Polym. Adv. Technol. 33, 503 (2022).

    Google Scholar 

  9. I. Galimov, D. R. Gazeeva, and R. G. Bulgakov, Izv. Akad. Nauk, Ser. Khim., No. 10, 2070 (2011).

  10. P. Watts, P. Fearon, W. Hsu, N. Billingham, H. Kroto, and D. Walton, J. Mater. Chem. 13, 491 (2003).

    Article  CAS  Google Scholar 

  11. E. B. Zeinalov and G. Kosmehl, Polym. Degrad. Stab. 71, 197 (2001).

    Article  CAS  Google Scholar 

  12. J. Yang, Y. Huang, Y. Lu, S. Li, Q. Yang, and G. Li, Carbon 89, 340 (2015).

    Article  CAS  Google Scholar 

  13. P. M. Nedorezova, V. G. Shevchenko, A. N. Shchegolikhin, V. I. Tsvetkova, and Yu. M. Korolev, Polym. Sci., Ser. A 46, 242 (2004).

    Google Scholar 

  14. A. A. Koval’chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Macromolecules 41, 3149 (2008).

    Article  Google Scholar 

  15. L. A. Kostandov, N. S. Enikolopov, and F. S. Dyachkovsky, US Pat. No. 4241112 (1980).

  16. F. S. D’yachkovskii and L. A. Novokshonova, Usp. Khim. 53, 200 (1984).

    Google Scholar 

  17. T. V. Monakhova, P. M. Nedorezova, T. A. Bogaevskaya, V. I. Tsvetkova, and Yu. A. Shlyapnikov, Vysokomol. Soedin., Ser. A 30, 2415 (1988).

    CAS  Google Scholar 

  18. S. V. Pol’shchikov, P. M. Nedorezova, A. N. Klyamkina, V. G. Krashenninikov, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, E. A. Sinevich, T. V. Monakhova, and V. E. Muradyan, Nanotechnol. Russia 8, 8027 (2013).

    Article  Google Scholar 

  19. S. V. Polschikov, P. M. Nedorezova, T. V. Monakhova, A. N. Klyamkina, A. N. Shchegolikhin, V. G. Krasheninnikov, V. E. Muradyan, A. A. Popov, and A. L. Margolin, Polym. Sci., Ser. B 55, 286 (2013).

    Article  CAS  Google Scholar 

  20. T. V. Monakhova, P. M. Nedorezova, S. V. Pol’shchikov, A. A. Popov, and A. L. Margolin, Russ. J. Phys. Chem. B 8, 874 (2014).

    Article  CAS  Google Scholar 

  21. M. E. Achaby, F.-E. Arrakhiz, S. Vaudreuil, A. K. Qaiss, M. Bousmina, and O. Fassi-Fehri, Polym. Compos. 33, 733 (2012).

    Article  Google Scholar 

  22. A. L. Margolin, T. V. Monakhova, P. M. Nedorezova, A. N. Klyamkina, and S. V. Polschikov, Polym. Degrad. Stab. 156, 59 (2018).

    Article  CAS  Google Scholar 

  23. W. Spaleck, F. Kuber, A. Winter, J. Rohrmann, B. Bochmann, M. Antberg, V. Dolle, and E. F. Paulus, Organometallics 13, 954 (1994).

    Article  CAS  Google Scholar 

  24. W. Kaminsky, Macromolecules, No. 260, 1 (2007).

  25. M. Alexandre, E. Martin, P. Dubois, M. G. Mart, and R. Jerome, Chem. Mater. 13, 236 (2001).

    Article  CAS  Google Scholar 

  26. W. Kaminsky, Front. Chem. Sci. Eng. 12, 555 (2018).

    Article  CAS  Google Scholar 

  27. O. M. Palaznik, P. M. Nedorezova, V. G. Shevchenko, V. G. Krasheninnikov, T. V. Monakhova, and A. A. Arbuzov, Polym. Sci., Ser. B 63, 161 (2021).

    Article  CAS  Google Scholar 

  28. M. A. Martynov and K. A. Valegzhanina, Vysokomol. Soedin. 8, 376 (1966).

    CAS  Google Scholar 

  29. L. S. Shibryaeva, O. V. Shatalova, A. V. Krivandin, O. B. Petrov, N. N. Korzh, and A. A. Popov, Polym. Sci., Ser. A 45, 244 (2003).

    Google Scholar 

  30. N. M. Emanuel and A. L. Buchachenko, Chemical Physics of Polymer Degradation and Stabilization (VNU Science Press, Utrecht, The Netherlands, 1987; Nauka, Moscow, 1988).

  31. L. S. Shibryaeva, L. A. Rishina, O. V. Shatalova, and A. V. Krivandin, Polym. Sci., Ser. B 53, 618 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This work supported by the program of Fundamental Research of the Russian Academy of Sciences (State Assignment no. FFZE-2022-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Nedorezova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaznik, O.M., Nedorezova, P.M. & Krasheninnikov, V.G. Effect of Oxidation Temperature on the Crystalline Phase of Polypropylene in Composites with Single-Walled Carbon Nanotubes. Polym. Sci. Ser. A 65, 396–405 (2023). https://doi.org/10.1134/S0965545X23701110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23701110

Navigation