Skip to main content
Log in

A Robotic Collector of Space Debris

  • MECHANICS OF MACHINES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The role of materials in the development of spacecraft for disposal of space debris is considered. The necessity of taking into account the induced time-varying resistivity of different materials is shown, since the destruction of structural elements occurs under the combined action of the load and the environment that occur on the surface and in the volume of the structural elements under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liou, J.C., Matney, M., Anz-Meador, P., Kessler, D.J., Jansen, M., and Theall, J.R., The new NASA orbital debris engineering model ORDEM2000, NASA/TP-2002-210780, S-890, NAS 1.60:210780, 2002, p. 98.

  2. Taylor, M.W., Orbital Debris: Technical and Legal Issues and Solutions, Montreal: Institute of Air and Space Law, 2006.

    Google Scholar 

  3. Aleshin, V.I., Astrakhantsev, M.V., and Afanas’eva, T.I., Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom (Monitoring of Anthropogenic Pollution of Near-Earth Space and Warning of Hazardous Situations Induced by Space Debris), Makarova, Yu.N., Ed., Moscow: TsNIIMash, 2015.

  4. Lavrent’ev, V.G., Oleinikov, I.I., and Chervonov, A.M., Main aspects of anthropogenic situation monitoring in near-earth space for guaranteeing cosmic activities security, Mekh., Upr. Inf., 2015, vol. 7, no. 1, pp. 216–228.

    Google Scholar 

  5. Makarov, Yu.V., Space debris monitoring: Problems and solutions, Nanoindustriya, 2019, vol. 12, no. 1, pp. 6–14. https://doi.org/10.22184/1993-8578.2019.12.1.6.14

    Article  Google Scholar 

  6. Nikol’skii, V.V., Proektirovanie kosmicheskikh apparatov (Design of Space Vehicles), St. Petersburg: Baltiiskii Gos. Tekh. Univ., 2003.

  7. Vanke, V.A., Microwave-electronics—Of prospect in space power, Tekhnol. Konstruirovanie Elektron. Apparature, 2007, no. 6, pp. 12–15.

  8. Egorov, A.G. and Tizilov, A.S., Prospects and problems of movement and power plants in powder metal fuel, Vestn. Samar. Gos. Aerokosmicheskogo Univ., 2011, nos. 3–2, pp. 277–281.

  9. Barkova, M.E., Kuznetsova, V.O., Zhukov, A.O., and Kartsan, I.N., Management of processes of space debris capture and processing into fuel, J. Phys.: Conf. Ser., 2021, vol. 1889, no. 4, p. 042086. https://doi.org/10.1088/1742-6596/1889/4/042086

    Article  Google Scholar 

  10. Kuznetsova, V., Barkova, M., Zhukov, A., and Kartsan, I., Analysis and assessment of the effects of corrosive hydrogen media on the stress-strain state of a spherical titanium alloy shell, Mater. Sci. Forum, 2022, vol. 1049, pp. 85–95. https://doi.org/10.4028/www.scientific.net/msf.1049.85

  11. Popov, V.G. and Yaroslavtsev, N.L., Zhidkostnye raketnye dvigateli (Liquid Fuel Rocket Engines), Moscow: MATI, 2001.

  12. Tret’yakova, S.G., Rastunova, I.L., and Rozenkevich, M.B., Studying the possibility of usage of the Sabatier reaction as a way to reverse the flows for isotope exchange in the carbon dioxide-water system, Usp. Khim. Khim. Tekhnol., 2008, no. 8, pp. 70–75.

  13. Hao, J.-C., Leng, J.-S., and Wei, Z., Non-destructive evaluation of composite pressure vessel by using FBG sensors, Chin. J. Aeronaut., 2007, vol. 20, no. 2, pp. 120–123. https://doi.org/10.1016/s1000-9361(07)60017-x

    Article  Google Scholar 

  14. Blassiau, S., Bunsell, A.R., and Thionnet, A., Damage accumulation processes and life prediction in unidirectional composites, Proc. R. Soc. A: Math., Phys. Eng. Sci., 2007, vol. 463, no. 2080, pp. 1135–1152. https://doi.org/10.1098/rspa.2007.1817

  15. Vinogradov, A., Danyuk, A.V., Merson, D.L., and Yasnikov, I.S., Probing elementary dislocation mechanisms of local plastic deformation by the advanced acoustic emission technique, Scr. Mater., 2018, vol. 151, pp. 53–56. https://doi.org/10.1016/j.scriptamat.2018.03.036

    Article  Google Scholar 

  16. Seow, C.E., Zhang, J., Coules, H.E., Wu, G., Jones, C., Ding, J., and Williams, S., Effect of crack-like defects on the fracture behaviour of wire + arc additively manufactured nickel-base Alloy 718, Addit. Manuf., 2020, vol. 36, no. 12, p. 101578. https://doi.org/10.1016/j.addma.2020.101578

    Article  Google Scholar 

  17. Grazion, S., Spiryagin, V., Erofeev, M., Kravchenko, I., Kuznetsov, Yu., Mukomela, M., Velichko, S., Ašonja, A., and Kalashnikova, L., Diagnostics of defect detection in the initial stages of structural failure using the acoustic emission method of control, Appl. Eng. Lett., 2022, vol. 7, no. 2, pp. 45–53. https://doi.org/10.18485/aeletters.2022.7.2.1

    Article  Google Scholar 

  18. Gorbachev, V.I. and Kabanova, L.A., Formulation of problems in the general Kirchhoff-Love theory of inhomogeneous anisotropic plates, Moscow Univ. Mech. Bull., 2018, vol. 73, no. 3, pp. 60–66. https://doi.org/10.3103/S0027133018020020

    Article  MATH  Google Scholar 

  19. Zubov, L.M., Von Kármán equations for an elastic plate with dislocations and disclinations, Dokl. Phys., 2007, vol. 52, no. 1, pp. 67–70. https://doi.org/10.1134/S102833580701017X

    Article  Google Scholar 

  20. Petrov, V.V., Ovchinnikov, I.G., and Inozemtsev, V.K., Two-step method of sequential perturbation of parameters and its application to solution of nonlinear problems of solid mechanics, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred (Problems of Strength of Structural Elements under Action of Loads and Working Media), Saratov: Saratovsk. Gos. Tekh. Univ., 2001, p. 6.

    Google Scholar 

  21. Treschev, A.A. and Spasskaya, M.V., Stress-strain state circular cylindrical shell made of materials with complicated properties, Mater. Phys. Mech., 2016, vol. 29, no. 1, pp. 32–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kolemesin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkova, M.E., Zhukov, A.O., Kartsan, I.N. et al. A Robotic Collector of Space Debris. J. Mach. Manuf. Reliab. 52, 411–421 (2023). https://doi.org/10.3103/S1052618823050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618823050035

Keywords:

Navigation