Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 2, 2023

Series of new cobalt (II) and nickel (II) trinuclear fluorotrifluoroacetates with tetrahydrofuran – contribution to the inverse coordination chemistry and unique cations

  • Mikhail E. Buzoverov EMAIL logo , Tatyana Yu. Glazunova , Victoria E. Gontcharenko and Igor V. Morozov

Abstract

The six new trinuclear fluorocarboxylates with tetrahydrofuran (THF) molecules as terminal ligands are presented. The structures of compounds have been determined by single-crystal X-ray diffraction. According to the structure data, complexes of nickel (II) and cobalt (II) form isomorphous series, namely [K(CF3COOH)6][M33-F)(CF3COO)6(THF)3] (M = Co (I) and Ni (II)), Na[M33-F)(CF3COO)6(THF)(CF3COOH)2] (M = Co (III) and Ni (IV)) and [Li(CF3COOH)4][M33-F)(CF3COO)6(THF)3] (M = Co (V) and Ni (VI)). In crystal structures of I, II, V and VI, previously unknown cations [K(CF3COOH)6]+ and [Li(CF3COOH)4]+ have been detected. All substances were studied by IR spectroscopy, and bands sensitive to the nature of metal atoms included in the compounds have been found. The inverse coordination of tridentate fluoride-ion in cobalt (II) and nickel (II) fluorocarboxylates is discussed in the article.


Corresponding author: Mikhail E. Buzoverov, Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory, 1-3, Moscow, 119991, Russia, E-mail:

Acknowledgments

Research was carried out under partial support of MSU Shared Research Equipment Center “Technologies for obtaining new nanostructured materials and their complex study”, National Project “Science” and MSU Program of Development. The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to single-X-ray diffraction equipment.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The study was supported by the RSF (project no. 22-72-10034).

  5. Data availability: Not applicable.

References

1. Haiduc, I. Inverse coordination – an emerging new chemical concept. II. Halogens as coordination centers. Coord. Chem. Rev. 2017, 348, 71–91; https://doi.org/10.1016/j.ccr.2017.08.012.Search in Google Scholar

2. Mulvey, R. E. S-Block metal inverse crowns: synthetic and structural synergism in mixed alkali metal–magnesium (or zinc) amide chemistry. Chem. Commun. 2001, 37, 1049–1056; https://doi.org/10.1039/b101576l.Search in Google Scholar

3. Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S., Wright, D. S. Manganese(II)–lithium and – sodium inverse crown ether (ICE) complexes. Chem. Commun. 2008, 44, 308–310; https://doi.org/10.1039/b714880a.Search in Google Scholar

4. Orgel, L. E. Structure of the trinuclear basic acetates. Nature 1960, 187, 504–505; https://doi.org/10.1038/187504b0.Search in Google Scholar

5. Figgis, B. N., Robertson, G. B. Crystal-molecular structure and magnetic properties of Cr3 (CH3COO)6OCl.5H2O. Nature 1965, 205, 694–695; https://doi.org/10.1038/205694a0.Search in Google Scholar

6. Haiduc, I. Inverse coordination – an emerging new chemical concept. Oxygen and other chalcogens as coordination centers. Coord. Chem. Rev. 2017, 338, 1–26; https://doi.org/10.1016/j.ccr.2017.02.016.Search in Google Scholar

7. Baranwal, B. P., Fatma, T., Gupta, R. D., Gupta, T. Stepwise substitution of oxo-centered, trinuclear chromium (III) carboxylates with Schiff base. Transition Met. Chem. 2007, 32, 501–506; https://doi.org/10.1007/s11243-007-0195-5.Search in Google Scholar

8. Baranwal, B. P., Fatma, T., Varma, A. Synthesis, spectral and thermal characterization of nano-sized, oxo-centered, trinuclear carboxylate-bridged chromium(III) complexes of hydroxycarboxylic acids. J. Mol. Struct. 2009, 920, 472–477; https://doi.org/10.1016/j.molstruc.2008.12.029.Search in Google Scholar

9. Yuge, H., Asahi, S., Miyamoto, T. K. A new route for substitution of the bridging acetate on the oxo-centered triruthenium acetate cluster. Dalton Trans. 2009, 13, 2287–2289; https://doi.org/10.1039/b901050p.Search in Google Scholar

10. Yoshida, J., Kondo, S., Yuge, H. A synthetic strategy for a new series of oxo-centered tricobalt complexes with mixed bridging ligands of acetate and pyrazolate anions. Dalton Trans. 2013, 42, 2406–2413; https://doi.org/10.1039/c2dt31988h.Search in Google Scholar

11. Xu, H.-B., Wang, B.-W., Pan, F., Wang, Z.-M., Gao, S. Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers. Angew. Chem. 2007, 119, 7532–7536; https://doi.org/10.1002/ange.200702648.Search in Google Scholar

12. Kim, J., Cho, H. Reductive coupling of trinuclear [MnIIMnIII2O] core to form hexanuclear [Mn4IIMn2IIIO2] cluster. Inorg. Chem. Commun. 2004, 7, 122–124; https://doi.org/10.1016/j.inoche.2003.10.020.Search in Google Scholar

13. Royer, A. C., Russell, K., Belmore, K., Vincent, J. B. Formation of oxo-centered trinuclear chromium carboxylate complexes and hydrolysis of Cr3 as established by paramagnetic 2H NMR spectroscopy. J. Inorg. Biochem. 2014, 131, 12–20; https://doi.org/10.1016/j.jinorgbio.2013.10.012.Search in Google Scholar PubMed

14. Blake, A. B., Sinn, E., Yavari, A., Murray, K. S., Moubaraki, B. Oxo-centred trinuclear acetate complexes containing mixed-metal clusters. Crystal structure of a chromium(III)iron(III)nickel(II) complex and magnetic properties of a dichromium(III)magnesium(II) complex. J. Chem. Soc., Dalton Trans. 1998, 1, 45–50; https://doi.org/10.1039/a705778d.Search in Google Scholar

15. Abdulwahab, K. O., Malik, M. A., O’Brien, P., Vitorica-Yrezabal, I. J., Timco, G. A., Tuna, F., Winpenny, R. E. P. The synthesis of a monodisperse quaternary ferrite (FeCoCrO4) from the hot injection thermolysis of the single source precursor [CrCoFeO(O2CtBu)6(HO2CtBu)3]. Dalton Trans. 2018, 47, 376–381; https://doi.org/10.1039/c7dt03302h.Search in Google Scholar PubMed

16. Toma, H. E., Araki, K., Alexiou, A. D. P., Nikolaou, S., Dovidauskas, S. Monomeric and extended oxo-centered triruthenium clusters. Coord. Chem. Rev. 2001, 219–221, 187–234; https://doi.org/10.1016/s0010-8545(01)00326-5.Search in Google Scholar

17. Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., Grenèche, J.-M., Margiolaki, I., Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007, 27, 2820–2822; https://doi.org/10.1039/b704325b.Search in Google Scholar PubMed

18. Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., Chang, J.-S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 2009, 19, 1537–1552; https://doi.org/10.1002/adfm.200801130.Search in Google Scholar

19. Tereshchenko, D. S., Morozov, I. V., Boltalin, A. I., Kemnitz, E., Troyanov, S. I. Trinuclear Co(II) and Ni(II) complexes with tridentate fluorine, [M3(mu(3)-F)(CF3COO)6(CF3COOH)3]−: synthesis and crystal structure. Russ. J. Inorg. Chem. 2004, 49, 836.Search in Google Scholar

20. Morozov, I. V., Karpova, E. V., Glazunova, T. Yu., Boltalin, A. I., Zakharov, M. A., Tereshchenko, D. S., Fedorova, A. A., Troyanov, S. I. Trifluoroacetate complexes of 3d elements: specific features of syntheses and structures. Russ. J. Coord. Chem. 2016, 42, 647–661; https://doi.org/10.1134/s107032841610002x.Search in Google Scholar

21. Walsh, J. P. S., Meadows, S. B., Ghirri, A., Moro, F., Jennings, M., Smith, W. F., Graham, D. M., Kihara, T., Nojiri, H., Vitorica-Yrezabal, I. J., Timco, G. A., Collison, D., McInnes, E. J. L., Winpenny, R. E. P. Electronic structure of a mixed-metal fluoride-centered triangle complex: a potential qubit component. Inorg. Chem. 2015, 54, 12019–12026; https://doi.org/10.1021/acs.inorgchem.5b01898.Search in Google Scholar PubMed

22. Tereshchenko, D. S., Morozov, I. V., Boltalin, A. I., Karpova, E. V., Glazunova, T.Yu., Troyanov, S. I. Alkali metal and ammonium fluoro(trifluoroacetato)metallates M′[M′′3(μ3-F)(CF3COO)6(CF3COOH)3], where M′ = Li, Na, K, NH4, Rb, or Cs and M′′ = Ni or Co. Synthesis and crystal structures. Crystallogr. Rep. 2013, 58, 68–77; https://doi.org/10.1134/s106377451206017x.Search in Google Scholar

23. Cannon, R. D., Jayasooriya, U. A., Arap Koske, S. K., White, R. P., Williams, J. H. Phase transitions in [Fe3O(OOCCD3)6(C5H5N)3](C5H5N): evidence from incoherent neutron scattering. J. Am. Chem. Soc. 1991, 113, 4158–4160; https://doi.org/10.1021/ja00011a017.Search in Google Scholar

24. Sheldrick, G. M. Shelxt—integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

25. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

26. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

27. Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 2014, 47, 806–809; https://doi.org/10.1107/s1600576714004427.Search in Google Scholar

28. Munasinghe, H. N., Imer, M. R., Szlag, R. G., Suescun, L., Rabuffetti, F. A. Reactivity of bi- and monometallic trifluoroacetates towards amorphous SiO2. Dalton Trans. 2022, 51, 18224–18233; https://doi.org/10.1039/d2dt02822k.Search in Google Scholar PubMed PubMed Central

29. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

30. Glazunova, T.Yu., Tereshchenko, D. S., Buzoverov, M. E., Karpova, E. V., Lermontova, E.Kh. Synthesis and crystal structures of new potassium Fluorotrifluoroacetatometallates: Kn[M3(µ3-F)(CF3COO)6L3]L’ (M = Co, Ni; L = CF3COO–, CF3COOH, H2O; L’ = CF3COOH, H2O; n = 1, 2). Russ. J. Coord. Chem. 2021, 47, 347–355; https://doi.org/10.1134/s1070328421040023.Search in Google Scholar

31. Tereshchenko, D. S., Glazunova, T.Yu., Buzoverov, M. E., Lermontova, E.Kh., Goncharenko, V. E. Synthesis and crystal structures of new trinuclear cobalt(II) and nickel(II) fluorocarboxylate complexes. Russ. J. Coord. Chem. 2022, 48, 557–564; https://doi.org/10.1134/s1070328422090068.Search in Google Scholar

32. Kayumova, D. B., Tereshchenko, D. S., Shatalova, T. B., Lermontova, E.Kh., Boltalin, A. I., Morozov, I. V., Malkerova, I. P., Alikhanyan, A. S. Thermal behavior of the heteroligand (µ3-Fluoro)hexakis(µ2-trifluoroacetato)tris(pyridine)tricobaltate(II) tetramethylammonium complex (NMe4)[Co3F(TFA)6(Py)3]. Russ. J. Coord. Chem. 2022, 48, 870–876; https://doi.org/10.1134/s1070328422700026.Search in Google Scholar

33. Shurvell, H. F., Southby, M. C. Infrared and Raman spectra of tetrahydrofuran hydroperoxide. Vib. Spectrosc. 1997, 15, 137–146; https://doi.org/10.1016/s0924-2031(97)00031-3.Search in Google Scholar

34. Franke, R., Rothe, J., Pollmann, J., Hormes, J., Bönnemann, H., Brijoux, W., Hindenburg, Th. A study of the electronic and geometric structure of colloidal Ti0·0.5 THF. J. Am. Chem. Soc. 1996, 118, 12090–12097; https://doi.org/10.1021/ja953525d.Search in Google Scholar

35. Cadioli, B., Gallinella, E., Coulombeau, C., Jobic, H., Berthier, G. Geometric structure and vibrational spectrum of tetrahydrofuran. J. Phys. Chem. 1993, 97, 7844–7856; https://doi.org/10.1021/j100132a010.Search in Google Scholar


Supplementary Material

The article contains supplementary material (https://doi.org/10.1515/zkri-2023-0030).


Received: 2023-08-03
Accepted: 2023-09-15
Published Online: 2023-10-02
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0030/html
Scroll to top button