Skip to main content
Log in

Estimation of the Angular Position of an Aerial Vehicle Based on Measurements of the Parameters of Its Linear Motion

  • COMPLEX TECHNICAL CONTROL SYSTEMS AND INFORMATION AND CONTROL COMPLEXES
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A method for determining the values of the attitude angles of an aerial vehicle (AV) is considered. For the proposed method, the initial data are the values of overloads in the body-fixed coordinate system and velocity projections in the Earth’s normal coordinate system. It is proposed, using the approaches of direct methods for finding the optimal control, to parametrize the pitch, roll, and yaw angles, and then find the values of the parameters based on the initial data. The resulting optimization problem can be solved using a population algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice (Princeton University Press, Princeton, 2012; Tekhnosfera, Moscow, 2015).

  2. Z. M. Kassas, P. Closas, and J. Gross, “Navigation systems panel report. Navigation systems for autonomous and semiautonomous vehicles: Current trends and future challenges,” IEEE Aerospace Electron. Syst. Mag. 34 (5), 82–84 (2019).

    Article  Google Scholar 

  3. A. Dorobantu, A. Murch, B. Mettler, and G. Balas, “System identification for small, low-cost, fixed-wing aircraft,” J. Aircraft, 50 (4), 1117–1130 (2013).

    Article  Google Scholar 

  4. O. N. Korsun and B. K. Poplavskii, “Estimation of systematic errors of onboard measurement of angle of attack and sliding angle based on integration of data of satellite navigation system and identification of wind velocity,” J. Comput. Syst. Sci. Int. 50 (1), 130–143 (2011).

    Article  Google Scholar 

  5. S. G. Pushkov, L. L. Lovitskii, and O. N. Korsun, “Methods for determining wind speed during flight tests of aviation equipment using satellite navigation systems,” Mekhatron. Avtom. Upr., No. 9, pp. 65–70 (2013).

  6. Methods of Classical and Modern Theories of Automatic Control, Ed. by K. A. Pupkov and N. D. Egupov (MGTU im. Baumana, Moscow, 2004) [in Russian].

  7. V. I. Van’ko, O. V. Ermoshina, and G. N. Kuvyrin, Calculus of Variations and Optimal Control (MGTU im. Baumana, Moscow, 2006) [in Russian].

  8. A. V. Rao, “Survey of numerical methods for optimal control,” Adv. Astron. Sci. 135, 497–528 (2010).

    Google Scholar 

  9. B. A. Conway, “A survey of methods available for numerical optimization of continuous dynamic systems,” J. Optim. Theory Appl. 152 (2), 271–306 (2012).

    Article  MathSciNet  Google Scholar 

  10. O. N. Korsun and A. V. Stulovskii, “Direct method for forming the optimal open loop control of aerial vehicles,” J. Comput. Syst. Sci. Int. 58 (2), 229–243 (2019).

    Article  MathSciNet  Google Scholar 

  11. Aerodynamics, Stability, and Controllability of Hypersonic Aircraft, Ed. by G. S. Bushgens (Fizmatlit, Moscow, 1998) [in Russian].

    Google Scholar 

  12. A. I. Diveev and S. V. Konstantinov, “Study of evolutionary algorithms for solving the problem of optimal control " Tr. MFTI, No. 3, 76–85 (2017).

  13. A. V. Panteleev and M. D. Evdokimova, “Swarm intelligence methods in problems of optimization of technical system parameters,” Nauchn. Vestn. Mosk. Gos. Tech. Univ. Grazhdanskoi Aviats., No. 2, 6–15 (2017).

  14. Advances in Swarm Intelligence. Variations and Adaptations for Optimization Problems, Ed. by S. Mirjalili, A. Biswas, and C. B. Kalayci (Springer, 2022).

    Google Scholar 

  15. A. E. Olsson, Particle Swarm Optimization: Theory, Techniques and Applications (Nova Science Publishers, Hauppage, N.Y., 2011).

    Google Scholar 

  16. GOST 20058-80. Dynamics of Aerial Vehicles in the Atmosphere. Terms, Definitions, and Notations (Izd. standartov, Moscow, 1981) [in Russian].

  17. A. A. Lebedev and L. S. Chernobrovkin, Unmanned Aircraft Flight Dynamics (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  18. O. N. Korsun, A. I. Daneko, P. A. Motlich, and M. Kh. Om, “Assessment of angles of attack and sideslip of UAV in the absence of aerodynamic angle sensors,” Mekhatronika, Avtom., Upr., No. 5, pp. 274–280 (2022).

  19. Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Spline-Function Methods (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  20. R. C. Eberhardt and J. A. Kennedy, “Particle swarm optimization,” Proc. IEEE Int. Conf. on Neural Networks (Piscataway, N.J., 1995), pp. 1942–1948.

  21. B. S. Ermakov, “Method of swarm particles with adaptive social and cognitive components,” Model. Optim. Inf. Tekhnol., No. 3, 6 (2019).

  22. A. G. Gad, “Particle swarm optimization algorithm and its applications: A systematic review,” Comput. Methods Eng. 29, 2531–2561 (2022).

    Article  MathSciNet  Google Scholar 

  23. Nature-Inspired Optimizers: Theories, Literature Reviews and Applications, Ed. by S. Mirjalili, J. S. Dong, and A. Lewis (Springer, 2020).

  24. O. N. Korsun and A. V. Stulovskii, “Recovery of aircraft motion parameters using the optimal control algorithms,” J. Comput. Syst. Sci. Int. 62 (1), 57–68 (2023).

    Article  Google Scholar 

  25. K. K. Vasil’chenko, V. A. Leonov, I. M. Pashkovskii, and B. K. Poplavskii, Aircraft Flight Tests (Mashinostroenie, Moscow, 1996) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 20-08-00449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Korsun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korsun, O.N., Stulovsky, A.V. Estimation of the Angular Position of an Aerial Vehicle Based on Measurements of the Parameters of Its Linear Motion. J. Comput. Syst. Sci. Int. 62, 542–555 (2023). https://doi.org/10.1134/S1064230723030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723030085

Navigation