Skip to main content
Log in

Suboptimal Robust Stabilization of an Unknown Autoregressive Object with Uncertainty and Offset External Perturbation

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In this paper, the problem of suboptimal stabilization of an object with discrete time, output and control uncertainties, and bounded external perturbation is considered. The autoregressive nominal model coefficients, uncertainty amplification coefficients, norm and external disturbance offset are assumed to be unknown. The quality indicator is the worst-case asymptotic upper bound of the output modulus of the object. The solution of the problem in conditions of non-identifiability of all unknown parameters is based on the method of recurrent target inequalities and optimal online estimation, in which the quality index of the control problem serves as an identification criterion. A non-linear replacement of the unknown parameter perturbations that reduces the optimal online estimation problem to a fractional linear programming problem is proposed. The performance of adaptive suboptimal control is illustrated by numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Rohrs, C., Valavani, L., Athans, M., and Stein, G., Robustness of Adaptive Control Algorithms in the Presence of Unmodeled Dynamics, The 21st IEEE Conference on Decision and Control, 1982, pp. 3–11. https://doi.org/10.1109/CDC.1982.268392

  2. Rohrs, C., Valavani, L., Athans, M., and Stein, G., Robustness of Continuous-Time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics, IEEE Transactions Automatic Control, 1985, vol. 30, no. 9, pp. 881–889. https://doi.org/10.1109/TAC.1985.1104070

    Article  MATH  Google Scholar 

  3. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River: Prentice Hall, 1996.

    MATH  Google Scholar 

  4. Annaswamy, A.A. and Fradkov, A.L., A Historical Perspective of Adaptive Control and Learning, Annual Reviews in Control, 2021, vol. 52, pp. 18–41. https://doi.org/10.1016/j.arcontrol.2021.10.014

    Article  MathSciNet  Google Scholar 

  5. Narendra, K. and Annaswamy, A., Stable Adaptive Systems, Dover, 2005.

    MATH  Google Scholar 

  6. Ioannou, P.A. and Sun, J., Robust Adaptive Control, Upper Saddle River: Prentice Hall, 1996.

    MATH  Google Scholar 

  7. The Modeling of Uncertainty in Control Systems (Lecture Notes in Control and Information Sciences), vol. 192, Smith, R.S. and Dahleh, M., Eds., London, U.K.: Springer-Verlag, 1994.

    Google Scholar 

  8. Ljung, L. and Guo, L., The Role of Model Validation for Assessing the Size of the Unmodeled Dynamics, IEEE Trans. Automat. Control, 1997, vol. 42, pp. 230–1239. https://doi.org/10.1109/9.623084

    Article  MathSciNet  MATH  Google Scholar 

  9. FLamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Murray, R., Nijmeijer, H., Samad, T., Tilbury, D., and Van den Hof, P., Systems & Control for the Future of Humanity, Research Agenda: Current and Future Roles, Impact and Grand Challenges, Annual Reviews in Control, 2017, vol. 43, pp. 1–64. https://doi.org/10.1016/j.arcontrol.2017.04.001

    Article  Google Scholar 

  10. Khammash, M. and Pearson, J.B., Performance Robustness of Discrete-Time Systems with Structured Uncertainty, IEEE Trans. Automat. Control, 1991, vol. AC-36, no. 4, pp. 398–412. https://doi.org/10.1109/9.75099

    Article  MathSciNet  MATH  Google Scholar 

  11. Khammash, M. and Pearson, J.B., Analysis and Design for Robust Performance with Structured Uncertainty, Syst. Control Lett., 1993, vol. 20, no. 3, pp. 179–187.

    Article  MathSciNet  MATH  Google Scholar 

  12. Khammash, M.H., Robust Steady-State Tracking, IEEE Trans. Automat. Control, 1995, vol. 40, no. 11, pp. 1872–1880. https://doi.org/10.1109/9.471208

    Article  MathSciNet  MATH  Google Scholar 

  13. Khammash, M.H., Robust Performance: Unknown Disturbances and Known Fixed Inputs, IEEE Trans. Automat. Control, 1997, vol. 42, no. 12, pp. 1730–1734. https://doi.org/10.1109/9.650028

    Article  MathSciNet  MATH  Google Scholar 

  14. Sokolov, V.F., Asymptotic Robust Performance of the Discrete Tracking System in the \({{\ell }_{1}}\)-Metric, Autom. Remote Control, 1999, vol. 60, no. 1, part 2, pp. 82–91.

  15. Sokolov, V.F., Robastnoe upravlenie pri ogranichennykh vozmushcheniyakh (Robust Control under Limited Perturbations), Syktyvkar: Komi Science Center of Ural Department of Russian Academy of Sciences, 2011.

  16. Sokolov, V.F., Adaptive Robust Control of a Discrete Scalar Object in the \({{\ell }_{1}}\)-formulation, Autom. Remote Control, 1998, vol. 59, no. 3, part 2, pp. 392–411.

  17. Sokolov, V.F., Adaptive \({{\ell }_{1}}\) Robust Control for SISO System, Systems Control Lett., 2001, vol. 42, no. 5, pp. 379–393. https://doi.org/10.1016/S0167-6911(00)00110-910.1016/S0167-6911(00)00110-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, L., Feedback and Uncertainty: Some Basic Problems and Results, Annual Reviews in Control, 2020, vol. 49, pp. 27–36. https://doi.org/10.1016/j.arcontrol.2020.04.001

    Article  MathSciNet  Google Scholar 

  19. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Objects), Moscow: Nauka, 1981.

  20. Sokolov, V.F., Control-Oriented Model Validation and Errors Quantification in the \({{\ell }_{1}}\) Setup, IEEE Trans. Automat. Control, 2005, vol. 50, no. 10, pp. 1501–1508. https://doi.org/10.1109/TAC.2005.85664610.1109/TAC.2005.856646

  21. Sokolov, V.F., Model Evaluation for Robust Tracking under Unknown Upper Bounds on Perturbations and Measurement Noise, IEEE Trans. Automat. Control, 2014, vol. 59, no. 2, pp. 483–488. https://doi.org/10.1109/TAC.2013.2273295

  22. Sokolov, V.F., Modeling the System of Suboptimal Robust Tracking Under Unknown Upper Bounds on the Uncertainties and External Disturbances, Autom. Remote Control, 2014, vol. 75, no. 5, pp. 900–916.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sokolov, V.F., Problems of Adaptive Optimal Control of Discrete-Time Systems under Bounded Disturbance and Linear Performance Indexes, Autom. Remote Control, 2018, vol. 79, no. 6, pp. 1086–1099.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sokolov, V.F., \({{\ell }_{1}}\) Robust Performance of Discrete-Time Systems with Structured Uncertainty, Syst. Control Lett., 2001, vol. 42, no. 5, pp. 363–377. https://doi.org/10.1016/S0167-6911(00)00109-210.1016/S0167-6911(00)00109-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Boyd, S. and Vandenberghe, L., Convex Optimization, New York: Cambridge University Press, 2004.

    Book  MATH  Google Scholar 

  26. Guo, L., Self-convergence of Weighted Least-Squares with Applications to Stochastic Adaptive Control, IEEE Trans. Automat. Control, 1996, vol. 41, no. 1, pp. 79–89. https://doi.org/10.1109/9.481609

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, L. and Chen, H.-F., The Åström-Wittenmark Self-Tuning Regulator Revisited and ELS-based Adaptive Trackers, IEEE Trans. Autom. Control, 1991, vol. 36, no. 7, pp. 802–812.

    Article  MATH  Google Scholar 

  28. Polyak, B.T., Tremba, A.A., Khlebnikov, M.V., Shcherbakov, P.S., and Smirnov, G.V., Large Deviations in Linear Control Systems with Nonzero Initial Conditions, Autom. Remote Control, 2016, vol. 76, no. 6, pp. 957–976.

    Article  MathSciNet  MATH  Google Scholar 

  29. Polyak, D.T., Shcherbakova, P.S., and Smirnov, G., Peak Effects in Stable Linear Difference Equations, J. Diff. Equat. and Appl., 2018, vol. 24, no. 9, pp. 1488–1502. https://doi.org/10.1080/10236198.2018.1504930

    Article  MathSciNet  MATH  Google Scholar 

  30. Dahleh, M.A. and Doyle, J.C., From Data to Control, The Modeling of Uncertainty in Control Systems, Lecture Notes in Control and Information Sciences, vol. 192, Berlin: Springer, 1994, pp. 61–63.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Sokolov.

Additional information

This paper was recommended for publication by M.V. Khlebnikov, a member of the Editorial Board

APPENDIX

APPENDIX

Proof of Theorem 1. The robust stability condition (3.3) follows from Theorem 7 [24] applied to system (2.1), (3.1). To prove the second statement of the theorem, it is sufficient to apply Theorems 5 and 6 [24] (see also [15]). To do this, we have to present the system (2.1), (3.1) in the standard M–Δ form given in Fig. 5 and having a block form

$$\left( \begin{gathered} y \\ z \\ \end{gathered} \right) = M\left( \begin{gathered} r \\ w \\ \xi \\ \end{gathered} \right) = \left( {\begin{array}{*{20}{c}} {{{M}_{{yr}}}}&{{{M}_{{yw}}}}&{{{M}_{{y\xi }}}} \\ {{{M}_{{zr}}}}&{{{M}_{{zw}}}}&{{{M}_{{z\xi }}}} \end{array}} \right)\left( \begin{gathered} r \\ w \\ \xi \\ \end{gathered} \right),\quad \xi = \Delta z.$$
(A.1)
Fig. 5.
figure 5

M–Δ form of the system (2.1), (3.1).

For the system (2.1), (3.1) the signal r = cw1, 1 = (1, 1, …), and M–Δ form looks like

$$\left( \begin{gathered} y \\ {{z}^{1}} \\ {{z}^{2}} \\ \end{gathered} \right) = M\left( \begin{gathered} {\mathbf{1}} \\ w \\ {{\xi }^{1}} \\ {{\xi }^{2}} \\ \end{gathered} \right) = \left( {\begin{array}{*{20}{c}} 0&{{{\delta }^{w}}}&{{{\delta }^{y}}}&{{{\delta }^{u}}} \\ 0&{{{\delta }^{w}}}&{{{\delta }^{y}}}&{{{\delta }^{u}}} \\ { - \frac{{{{c}^{w}}q}}{{{{b}_{1}}}}}&{{{\delta }^{w}}{{G}^{\xi }}({{q}^{{ - 1}}})}&{{{\delta }^{y}}{{G}^{\xi }}({{q}^{{ - 1}}})}&{{{\delta }^{u}}{{G}^{\xi }}({{q}^{{ - 1}}})} \end{array}} \right)\left( \begin{gathered} {\mathbf{1}} \\ w \\ {{\xi }^{1}} \\ {{\xi }^{2}} \\ \end{gathered} \right),$$
(A.2)

where

$${{z}_{t}} = \left( \begin{gathered} {{y}_{t}} \\ {{u}_{t}} \\ \end{gathered} \right),\quad \xi = \left( \begin{gathered} {{\xi }^{1}} \\ {{\xi }^{2}} \\ \end{gathered} \right) = \left( {\begin{array}{*{20}{c}} {{{\Delta }^{1}}}&0 \\ 0&{{{\Delta }^{2}}} \end{array}} \right)z = \left( \begin{gathered} {{\Delta }^{1}}(y) \\ {{\Delta }^{2}}(u) \\ \end{gathered} \right).$$

The first and second lines of the matrix M in (A.2) correspond to Eq. (3.2). The third row of M corresponds to the representation of the optimal regulator (3.1) in the form of

$${{u}_{t}} = - {{c}^{w}}{\text{/}}{{b}_{1}} + {{G}^{\xi }}({{q}^{{ - 1}}}){{y}_{t}} = - {{c}^{w}}{\text{/}}{{b}_{1}} + {{\delta }^{w}}{{G}^{\xi }}({{q}^{{ - 1}}}){{w}_{t}} + {{\delta }^{y}}{{G}^{\xi }}({{q}^{{ - 1}}})\xi _{t}^{1} + {{\delta }^{u}}{{G}^{\xi }}({{q}^{{ - 1}}})\xi _{t}^{2}.$$

The formula for J(θ) in (3.4) corresponds to the quality index (2.4), in which sup is taken on the perturbation set \({v}\) with uncertainties Δ1 and Δ2 with finite memory (see [12]), and is derived by Theorem 5 [24] as follows. Let us assume that ||z||ss = (||z1||ss, …, ||zp||ss)T for the vector sequence z\(\ell _{e}^{p}\), and

$${{[M]}_{1}}: = \left( {\begin{array}{*{20}{c}} {{{{\left\| {{{M}_{{11}}}} \right\|}}_{1}}}& \ldots &{{{{\left\| {{{M}_{{1p}}}} \right\|}}_{1}}} \\ \vdots & \vdots & \vdots \\ {{{{\left\| {{{M}_{{q1}}}} \right\|}}_{1}}}& \ldots &{{{{\left\| {{{M}_{{qp}}}} \right\|}}_{1}}} \end{array}} \right)$$

for a stable q × p response matrix M of impulses Mij\({{\ell }_{1}}\). For the matrix M from (A.1) we will assume that

$${{M}_{{ss}}}(r): = \left( {\begin{array}{*{20}{c}} {{{{[{{M}_{{yr}}}r]}}_{{ss}}} + {{{[{{M}_{{yw}}}]}}_{1}}}&{{{{[{{M}_{{y\xi }}}]}}_{1}}} \\ {{{{[{{M}_{{zr}}}r]}}_{{ss}}} + {{{[{{M}_{{zw}}}]}}_{1}}}&{{{{[{{M}_{{z\xi }}}]}}_{1}}} \end{array}} \right).$$

According to Theorem 5 from [24]

$$J(\theta ) = {{[{{M}_{{yr}}}r]}_{{ss}}} + {{[{{M}_{{yw}}}]}_{1}} + {{[{{M}_{{y\xi }}}]}_{1}}{{(I - {{[{{M}_{{z\xi }}}]}_{1}})}^{{ - 1}}}({{[{{M}_{{zr}}}r]}_{{ss}}} + {{[{{M}_{{zw}}}]}_{1}}).$$

Then, for the system (A.2), we have

$$J(\theta ) = {{\delta }^{w}} + \left( {{{\delta }^{y}}\;{{\delta }^{u}}} \right){{\left( {I - \left( {\begin{array}{*{20}{c}} {{{\delta }^{y}}}&{{{\delta }^{u}}} \\ {{{\delta }^{y}}\left\| {{{G}^{\xi }}} \right\|}&{{{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|} \end{array}} \right)} \right)}^{{ - 1}}}\left( \begin{gathered} {{\delta }^{w}} \\ \left| {{{c}^{w}}} \right|{{\left\| {\frac{{ - q}}{{{{b}_{1}}}}r} \right\|}_{{ss}}} + {{\delta }^{w}}\left\| {{{G}^{\xi }}} \right\| \\ \end{gathered} \right)$$
$$ = {{\delta }^{w}} + \left( {{{\delta }^{y}}\;{{\delta }^{u}}} \right){{\left( {\begin{array}{*{20}{c}} {1 - {{\delta }^{y}}}&{ - {{\delta }^{u}}} \\ { - {{\delta }^{y}}\left\| {{{G}^{\xi }}} \right\|}&{1 - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|} \end{array}} \right)}^{{ - 1}}}\left( \begin{gathered} {{\delta }^{w}} \\ \left| {{{c}^{w}}{\text{/}}{{b}_{1}}} \right| + {{\delta }^{w}}\left\| {{{G}^{\xi }}} \right\| \\ \end{gathered} \right)$$
$$ = {{\delta }^{w}} + \frac{1}{{1 - {{\delta }^{y}} - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|}}\left( {{{\delta }^{y}}\;{{\delta }^{u}}} \right)\left( {\begin{array}{*{20}{c}} {1 - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|}&{{{\delta }^{u}}} \\ {{{\delta }^{y}}\left\| {{{G}^{\xi }}} \right\|}&{1 - {{\delta }^{y}}} \end{array}} \right)\,{\kern 1pt} \left( \begin{gathered} {{\delta }^{w}} \\ \left| {{{c}^{w}}{\text{/}}{{b}_{1}}} \right| + {{\delta }^{w}}\left\| {{{G}^{\xi }}} \right\| \\ \end{gathered} \right)$$
$$ = {{\delta }^{w}} + \frac{1}{{1 - {{\delta }^{y}} - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|}}\left( {{{\delta }^{y}}\;{{\delta }^{u}}} \right)\left( \begin{gathered} {{\delta }^{w}} + {{\delta }^{u}}\left| {{{c}^{w}}{\text{/}}{{b}_{1}}} \right| \\ (1 - {{\delta }^{y}})\left| {{{c}^{w}}{\text{/}}{{b}_{1}}} \right| + {{\delta }^{w}}\left\| {{{G}^{\xi }}} \right\| \\ \end{gathered} \right)$$
$$ = {{\delta }^{w}} + \frac{{{{\delta }^{y}}{{\delta }^{w}} + {{\delta }^{u}}\left| {{{c}^{w}}} \right|\left\| {{{G}^{\xi }}} \right\| + {{\delta }^{u}}{{\delta }^{w}}\left\| {{{G}^{\xi }}} \right\|}}{{1 - {{\delta }^{y}} - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|}} = \frac{{{{\delta }^{w}} + {{\delta }^{u}}\left. {\left| {{{c}^{w}}{\text{/}}{{b}_{1}}} \right|} \right)}}{{1 - {{\delta }^{y}} - {{\delta }^{u}}\left\| {{{G}^{\xi }}} \right\|}}.$$

Finally, the monotonic convergence of Jμ(θ) to J(θ) in (3.4) is guaranteed by Theorem 6 from [24].

Proof of Statement 1. The vector \(\hat {\theta }\) satisfies the a priori assumption AP1 due to the conditions of Statement 1. For all t > 0, let us assume \({{{\hat {v}}}_{t}}\) = \(\hat {a}({{q}^{{ - 1}}}){{y}_{t}}\)\({{\hat {b}}_{1}}{{u}_{{t - 1}}}\). Then the control object with the parameter vector \(\hat {\theta }\) and the total perturbation \({\hat {v}}\) satisfies Eq. (2.1), and due to (4.1) the perturbation \({\hat {v}}\) satisfies the inequalities

$$\left| {{{{{\hat {v}}}}_{t}} - {{{\hat {c}}}^{w}}} \right|\;\leqslant \;{{\hat {\delta }}^{w}} + {{\hat {\delta }}^{y}}p_{t}^{y} + {{\hat {\delta }}^{u}}p_{t}^{u}.$$

The values of \({{{\hat {v}}}_{t}}\) can be represented in the form of (2.2) by choosing suitable values of wt, Δ1(y)t, Δ2(u)t that satisfy the inequalities (2.3), and thereby ensure that the a priori assumption of AP2 is true.

Proof of Theorem 2. Let us prove that for each update of the estimates, the distance from ζt to the half-space Ωt+1 is greater than ε. Since ζt only changes when \(\psi _{{{\text{t + 1}}}}^{{\text{T}}}{{\zeta }_{t}}\) < \({{\nu }_{{t + 1}}}\)\(\varepsilon \left| {{{\psi }_{{t + 1}}}} \right|\) and \(\psi _{{t + 1}}^{{\text{T}}}\hat {\zeta }\) \( \geqslant \) \({{\nu }_{{t + 1}}}\) for all \(\hat {\zeta } \in {{\Omega }_{{t + 1}}}\), then

$$\varepsilon \left| {{{\psi }_{{t + 1}}}} \right| < \left| {\psi _{{t + 1}}^{{\text{T}}}(\hat {\zeta } - {{\zeta }_{t}})} \right|\;\leqslant \;\left| {{{\psi }_{{t + 1}}}} \right|\left| {\hat {\zeta } - {{\zeta }_{t}}} \right|$$

and, therefore, \(\left| {\hat {\zeta } - {{\zeta }_{t}}} \right| > \varepsilon \) for all \(\hat {\zeta } \in {{\Omega }_{{t + 1}}}\). Thus, after adding the inequality \(\psi _{{t{\text{ + 1}}}}^{{\text{T}}}\hat {\zeta }\) \( \geqslant \) \({{\nu }_{{t + 1}}}\) describing the half-space Ωt+1 to the description of Zt, the polyhedron Zt+1 and all subsequent ones do not intersect the neighborhood of ε of the vector ζtZt. It follows that the ε/2-neighborhoods of the various estimates of ζt do not intersect each other. Since \({{Z}_{{t + 1}}} \subset {{Z}_{t}}\) for all t, the number of changes in the estimates of Zt and ζt will be finite if the estimates of ζt lie in a bounded set. From the equation of the adaptive regulator (6.1) for all t we have

$$\left| {{{u}_{t}}} \right|\;\leqslant \;\left| {c_{t}^{w}{\text{/}}b_{1}^{t}} \right| + \left\| {{{G}^{{{{\xi }_{t}}}}}} \right\|\left| {y_{{t - n + 1}}^{t}} \right|.$$

Then, for the object (2.1) on the time interval [0, t], the inequalities (5.5) with the parameters

$$\tilde {\delta }_{t}^{e} = {{\delta }^{w}} + {{\delta }^{u}}\mathop {\max }\limits_{s\;\leqslant \;t} \left| {c_{s}^{w}{\text{/}}b_{1}^{s}} \right|,\quad {{\tilde {\delta }}_{t}} = {{\delta }^{y}} + {{\delta }^{u}}\mathop {\max }\limits_{s\;\leqslant \;t} \left\| {{{G}^{{{{\xi }_{s}}}}}} \right\|$$

are true. Therefore, \({{\tilde {\zeta }}_{t}}\) = (ξT, cw, \(\tilde {\delta }_{t}^{e}\), \({{\tilde {\delta }}_{t}}\))TZt for all t. If the assumption (6.7) is satisfied, then I(\({{\tilde {\zeta }}_{t}}\)) \(\leqslant \) \(\bar {I}\), where \(\bar {I}\) is defined in (6.9) (with the right-hand inequality in (6.9) obviously followed from the definition of Gu in (6.6)). From (6.5) for all t, it follows that

$$I({{\zeta }_{t}})\;\leqslant \;I({{\tilde {\zeta }}_{t}})$$

and then It) \(\leqslant \) \(\bar {I}\). From the boundedness of It), there follows the boundedness of the estimates ζt and thus the finiteness of the number of updates of the estimates ξt  and Zt. Then ζt = ζ = (\(\xi _{\infty }^{{\text{T}}}\), \(c_{\infty }^{w}\), \(\delta _{\infty }^{e}\), \({{\delta }_{\infty }}\)) from some point of time t and

$$\psi _{{t + 1}}^{{\text{T}}}{{\zeta }_{\infty }}\; \geqslant \;{{\nu }_{{t + 1}}} - \varepsilon \left| {{{\psi }_{{t + 1}}}} \right|\quad \forall t\; \geqslant \;{{t}_{\infty }}.$$
(A.3)

From (A.3), it follows that, for all t \( \geqslant \) t,

$$\left| {{{a}_{\infty }}({{q}^{{ - 1}}}){{y}_{{t + 1}}} - {{b}_{\infty }}({{q}^{{ - 1}}}){{u}_{t}} - c_{\infty }^{w}} \right|\;\leqslant \;\delta _{\infty }^{e} + {{\delta }_{\infty }}{{p}_{{t + 1}}} + \varepsilon \left| {{{\psi }_{{t + 1}}}} \right|$$
$$\leqslant \;\delta _{\infty }^{e} + {{\delta }_{\infty }}{{p}_{{t + 1}}} + \varepsilon \left( {\sqrt {n + 1} {{p}_{{t + 1}}} + \sqrt 2 + \left| {{{u}_{t}}} \right|} \right)$$
$$\leqslant \;\delta _{\infty }^{e} + \varepsilon \left( {\sqrt 2 + \left| {c_{\infty }^{w}{\text{/}}b_{1}^{\infty }} \right|} \right) + \left[ {{{\delta }_{\infty }} + \varepsilon \left( {\sqrt {n + 1} + \left\| {{{G}^{{{{\xi }_{\infty }}}}}} \right\|} \right)} \right]{{p}_{{t + 1}}}.$$

Given Statement 1 of Section 4, it follows from the obtained inequality that the output of y at all t \( \geqslant \) \({{t}_{*}}\) satisfies the Eq. (2.1) with the parameter vector \(\zeta _{\infty }^{\varepsilon }\) of the form (6.10). Then Theorem 1 guarantees the left-hand inequality in (6.8). To prove the right-hand inequality in (6.8), we estimate the difference I(\(\zeta _{\infty }^{\varepsilon }\)) – I(\({{\zeta }_{\infty }}\)) from above using the inequality

$$\frac{{{{C}_{1}} + {{\varepsilon }_{1}}}}{{{{C}_{2}} - {{\varepsilon }_{2}}}} - \frac{{{{C}_{1}}}}{{{{C}_{2}}}} = \frac{{{{C}_{2}}{{\varepsilon }_{1}} + {{C}_{1}}{{\varepsilon }_{2}}}}{{{{C}_{2}}({{C}_{2}} - {{\varepsilon }_{2}})}} < \frac{{{{\varepsilon }_{1}} + {{C}_{1}}{{\varepsilon }_{2}}}}{{{{{({{C}_{2}} - {{\varepsilon }_{2}})}}^{2}}}}$$

with the parameters C1 = \(\delta _{\infty }^{e}\), C2 = 1 – δ \(\leqslant \) 1, ε1 = ε(\(\sqrt 2 \) + |\(c_{\infty }^{w}{\text{/}}b_{1}^{\infty }\)|), ε2 = ε(\(\sqrt {n + 1} \) + ||\({{G}^{{{{\xi }_{\infty }}}}}\)||). Then

$$I(\zeta _{\infty }^{\varepsilon }) - I({{\zeta }_{\infty }}) < \frac{{\sqrt 2 + \left| {c_{\infty }^{w}{\text{/}}b_{1}^{\infty }} \right| + \delta _{\infty }^{e}\left( {\sqrt {n + 1} + \left\| {{{G}^{{{{\xi }_{\infty }}}}}} \right\|} \right)}}{{{{{\left( {1 - {{\delta }_{\infty }} - \varepsilon \left( {\sqrt {n + 1} + \left\| {{{G}^{{{{\xi }_{\infty }}}}}} \right\|} \right)} \right)}}^{2}}}}\varepsilon $$

and, therefore, \({{K}_{{{{\zeta }_{\infty }}}}}\) has the form of (6.11). The first statement of Theorem 2 is proved.

Let us prove the second statement. Now let the inequalities (6.12) be satisfied in the closed adaptive system. Then inequalities (5.3) with constants C1 = |cw/b1| and C2 = ||Gξ|| follow from the object Eq. (2.1). This means that for the unknown parameter vector ζ defined in (5.9), the target inequalities (5.5) with the parameters δe, δ of the form (5.8) and inclusion ζ ∈ Zt are satisfied for all t. Then, due to the choice of optimal estimates ζt according to (6.5), at all t,

$$I({{\zeta }_{t}})\;\leqslant \;I(\zeta ) = J(\theta ),$$

where the equality I(ζ) = J(θ) is established in (5.9). Hence, as in the first statement of Theorem 2, there follows the convergence of the estimates ξt and Zt in finite time and the inequalities (6.13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, V.F. Suboptimal Robust Stabilization of an Unknown Autoregressive Object with Uncertainty and Offset External Perturbation. Autom Remote Control 84, 579–593 (2023). https://doi.org/10.1134/S0005117923060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923060097

Keywords:

Navigation