Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and regulation of human mitochondrial transcription

Abstract

The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of the human mitochondrial genome.
Fig. 2: Mitochondrial promoter recognition and initiation of transcription.
Fig. 3: H-strand mitochondrial DNA replication through RNA primer formation at origin of heavy-strand replication.
Fig. 4: Mitochondrial transcription patterns and the potential role of the second light-strand promoter.
Fig. 5: 7S RNA inhibits mitochondrial transcription initiation.
Fig. 6: Nucleoprotein formation by mitochondrial transcription factor A and the regulation of mitochondrial DNA activity.

Similar content being viewed by others

References

  1. Bogenhagen, D. & Clayton, D. A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 249, 7991–7995 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silva-Pinheiro, P. et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng. 7, 692–703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat Rev. Genet. https://doi.org/10.1038/s41576-021-00432-x (2021).

  6. Ringel, R. et al. Structure of human mitochondrial RNA polymerase. Nature 478, 269–273 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Falkenberg, M. et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31, 289–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Gaspari, M., Falkenberg, M., Larsson, N.-G. & Gustafsson, C. M. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 23, 4606–4614 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gustafsson, C. M., Falkenberg, M. & Larsson, N.-G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, B. G. et al. The human mitochondrial genome contains a second light strand promoter. Mol. Cell 82, 3646–3660.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y. et al. The PPR domain of mitochondrial RNA polymerase is an exoribonuclease required for mtDNA replication in Drosophila melanogaster. Nat. Cell Biol. 24, 757–765 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Rackham, O. & Filipovska, A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 23, 606–623 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Holzmann, J. et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135, 462–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Bhatta, A., Dienemann, C., Cramer, P. & Hillen, H. S. Structural basis of RNA processing by human mitochondrial RNase P. Nat. Struct. Mol. Biol. 28, 713–723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brzezniak, L. K., Bijata, M., Szczesny, R. J. & Stepien, P. P. Involvement of human ELAC2 gene product in 3’ end processing of mitochondrial tRNAs. RNA Biol. 8, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Ohkubo, A. et al. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet. 17, e1009873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clemente, P. et al. ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing. Nat. Commun. 13, 5750 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asin-Cayuela, J., Schwend, T., Farge, G. & Gustafsson, C. M. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form. J. Biol. Chem. 280, 25499–25505 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Yakubovskaya, E., Mejia, E., Byrnes, J., Hambardjieva, E. & Garcia-Diaz, M. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 141, 982–993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Byrnes, J. & Garcia-Diaz, M. Mitochondrial transcription: how does it end? Transcription 2, 32–36 (2011).

    Article  PubMed  Google Scholar 

  22. Guja, K. E. & Garcia-Diaz, M. Hitting the brakes: termination of mitochondrial transcription. Biochim. Biophys. Acta 1819, 939–947 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Terzioglu, M. et al. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab. 17, 618–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Mulcair, M. D. et al. A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 125, 1309–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Jemt, E. et al. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res. 43, 9262–9275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haberle, V. & Stark, A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19, 621–637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McShane E. et al. Regulatory principles of human mitochondrial gene expression revealed by kinetic analysis of the RNA life cycle. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527880 (2023).

  28. Rubalcava-Gracia, D., García-Villegas, R. & Larsson, N.-G. No role for nuclear transcription regulators in mammalian mitochondria? Mol. Cell 83, 832–842 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Basu, U., Bostwick, A. M., Das, K., Dittenhafer-Reed, K. E. & Patel, S. S. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J. Biol. Chem. 295, 18406–18425 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Monroy, G., Spencer, E. & Hurwitz, J. Characteristics of reactions catalyzed by purified guanylyltransferase from vaccinia virus. J. Biol. Chem. 253, 4490–4498 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. Montoya, J., Christianson, T., Levens, D., Rabinowitz, M. & Attardi, G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc. Natl Acad. Sci. USA 79, 7195–7199 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang, D. D. & Clayton, D. A. Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36, 635–643 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Fisher, R. P. & Clayton, D. A. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8, 3496–3509 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Parisi, M. A., Xu, B. & Clayton, D. A. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13, 1951–1961 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sologub, M., Litonin, D., Anikin, M., Mustaev, A. & Temiakov, D. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 139, 934–944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwinghammer, K. et al. Structure of human mitochondrial RNA polymerase elongation complex. Nat. Struct. Mol. Biol. 20, 1298–1303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morozov, Y. I. & Temiakov, D. Human mitochondrial transcription initiation complexes have similar topology on the light and heavy strand promoters. J. Biol. Chem. 291, 13432–13435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hillen, H. S., Morozov, Y. I., Sarfallah, A., Temiakov, D. & Cramer, P. Structural basis of mitochondrial transcription initiation. Cell 171, 1072–1081.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morozov, Y. I. et al. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res. 42, 3884–3893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ngo, H. B., Kaiser, J. T. & Chan, D. C. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18, 1290–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rubio-Cosials, A. et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat. Struct. Mol. Biol. 18, 1281–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Posse, V. et al. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation. Nucleic Acids Res. 42, 3638–3647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Posse, V. & Gustafsson, C. M. Human mitochondrial transcription factor B2 is required for promoter melting during initiation of transcription. J. Biol. Chem. 292, 2637–2645 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Litonin, D. et al. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 285, 18129–18133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramachandran, A., Basu, U., Sultana, S., Nandakumar, D. & Patel, S. S. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res. 45, 861–874 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Dairaghi, D. J., Shadel, G. S. & Clayton, D. A. Human mitochondrial transcription factor A and promoter spacing integrity are required for transcription initiation. Biochim. Biophys. Acta 1271, 127–134 (1995).

    Article  PubMed  Google Scholar 

  49. McCulloch, V., Seidel-Rogol, B. L. & Shadel, G. S. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell. Biol. 22, 1116–1125 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yakubovskaya, E. et al. Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Res. 42, 4100–4112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zamudio-Ochoa, A., Morozov, Y. I., Sarfallah, A., Anikin, M. & Temiakov, D. Mechanisms of mitochondrial promoter recognition in humans and other mammalian species. Nucleic Acids Res. 50, 2765–2781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fisher, R. P., Topper, J. N. & Clayton, D. A. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50, 247–258 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Dairaghi, D. J., Shadel, G. S. & Clayton, D. A. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Morozov, Y. I. et al. A model for transcription initiation in human mitochondria. Nucleic Acids Res. 43, 3726–3735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y. et al. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl Acad. Sci. USA 109, 16510–16515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kühl, I. et al. POLRMT does not transcribe nuclear genes. Nature 514, E7–E11 (2014).

    Article  PubMed  Google Scholar 

  57. Kühl, I. et al. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2, e1600963 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shutt, T. E., Lodeiro, M. F., Cotney, J., Cameron, C. E. & Shadel, G. S. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc. Natl Acad. Sci. USA 107, 12133–12138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Minczuk, M. et al. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 39, 4284–4299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Agaronyan, K., Morozov, Y. I., Anikin, M. & Temiakov, D. Mitochondrial biology. Replication–transcription switch in human mitochondria. Science 347, 548–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Posse, V., Shahzad, S., Falkenberg, M., Hällberg, B. M. & Gustafsson, C. M. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res. 43, 2615–2624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hillen, H. S. et al. Mechanism of transcription anti-termination in human mitochondria. Cell 171, 1082–1093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang, S. et al. TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep. 20, e48101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hillen, H. S., Temiakov, D. & Cramer, P. Structural basis of mitochondrial transcription. Nat. Struct. Mol. Biol. 25, 754–765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ettwiller, L., Buswell, J., Yigit, E. & Schildkraut, I. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genomics 17, 199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yan, B., Tzertzinis, G., Schildkraut, I. & Ettwiller, L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res. 32, 162–174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dunaway, M. & Ostrander, E. A. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature 361, 746–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Parvin, J. D. & Sharp, P. A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73, 533–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Dorman, C. J. & Dorman, M. J. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys. Rev. 8, 89–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dorman, C. J. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol. Cell Biol. 20, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ma, J. & Wang, M. D. DNA supercoiling during transcription. Biophys. Rev. 8, 75–87 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D. & Cozzarelli, N. R. Topological challenges to DNA replication: conformations at the fork. Proc. Natl Acad. Sci. USA 98, 8219–8226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Menger, K. E., Rodríguez-Luis, A., Chapman, J. & Nicholls, T. J. Controlling the topology of mammalian mitochondrial DNA. Open Biol. 11, 210168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zollo, O. & Sondheimer, N. Topological requirements of the mitochondrial heavy-strand promoters. Transcription 8, 307–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lodeiro, M. F. et al. Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. Proc. Natl Acad. Sci. USA 109, 6513–6518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zollo, O., Tiranti, V. & Sondheimer, N. Transcriptional requirements of the distal heavy-strand promoter of mtDNA. Proc. Natl Acad. Sci. USA 109, 6508–6512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Helmann, J. D. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol. Microbiol. 112, 335–347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Uchida, A. et al. Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter. eLife 6, e27283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18, 3225–3236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farge, G. et al. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep. 8, 66–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kukat, C. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl Acad. Sci. USA 108, 13534–13539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aloni, Y. & Attardi, G. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc. Natl Acad. Sci. USA 68, 1757–1761 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blumberg, A., Rice, E. J., Kundaje, A., Danko, C. G. & Mishmar, D. Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution. Genome Res. 27, 362–373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piechota, J. et al. Differential stability of mitochondrial mRNA in HeLa cells. Acta Biochim. Pol. 53, 157–167 (2005).

    Article  PubMed  Google Scholar 

  85. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pearce, S. F. et al. Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem. Sci. 42, 625–639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ngo, H. B., Lovely, G. A., Phillips, R. & Chan, D. C. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat. Commun. 5, 3077 (2014).

    Article  PubMed  Google Scholar 

  88. Amiott, E. A. & Jaehning, J. A. Mitochondrial transcription is regulated via an ATP ‘sensing’ mechanism that couples RNA abundance to respiration. Mol. Cell 22, 329–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Gaines, G., Rossi, C. & Attardi, G. Markedly different ATP requirements for rRNA synthesis and mtDNA light strand transcription versus mRNA synthesis in isolated human mitochondria. J. Biol. Chem. 262, 1907–1915 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Amiott, E. A. & Jaehning, J. A. Sensitivity of the yeast mitochondrial RNA polymerase to +1 and +2 initiating nucleotides. J. Biol. Chem. 281, 34982–34988 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Nicholls, T. J. et al. Dinucleotide degradation by REXO2 maintains promoter specificity in mammalian mitochondria. Mol. Cell 76, 784–796.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Korhonen, J. A., Pham, X. H., Pellegrini, M. & Falkenberg, M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 23, 2423–2429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang, D. D. & Clayton, D. A. Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc. Natl Acad. Sci. USA 82, 351–355 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Posse, V. et al. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet. 15, e1007781 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fusté, J. M. et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 37, 67–78 (2010).

    Article  PubMed  Google Scholar 

  96. Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc. Natl Acad. Sci. USA 105, 11122–11127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wanrooij, S. et al. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Rep. 13, 1130–1137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, D. Y. & Clayton, D. A. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J. Biol. Chem. 273, 30614–30621 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Miralles Fusté, J. et al. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet. 10, e1004832 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sarfallah, A., Zamudio‐Ochoa, A., Anikin, M. & Temiakov, D. Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL. EMBO J 40, e107988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Falkenberg, M. & Gustafsson, C. M. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit. Rev. Biochem. Mol. Biol. 55, 509–524 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Xu, B. & Clayton, D. A. A persistent RNA–DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol. Cell. Biol. 15, 580–589 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, D. Y. & Clayton, D. A. Properties of a primer RNA–DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J. Biol. Chem. 271, 24262–24269 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Pham, X. H. et al. Conserved sequence box II directs transcription termination and primer formation in mitochondria. J. Biol. Chem. 281, 24647–24652 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Wanrooij, P. H., Uhler, J. P., Simonsson, T., Falkenberg, M. & Gustafsson, C. M. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl Acad. Sci. USA 107, 16072–16077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wanrooij, P. H. et al. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 40, 10334–10344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng, K. et al. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res. 41, 5533–5541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zheng, K. et al. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Res. 42, 10832–10844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, M. et al. The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci. Adv. 7, eabf8631 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Tan, B. G., Wellesley, F. C., Savery, N. J. & Szczelkun, M. D. Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity. Nucleic Acids Res. 44, 7817–7829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bi, R. et al. The acquisition of an inheritable 50-bp deletion in the human mtDNA control region does not affect the mtDNA copy number in peripheral blood cells. Hum. Mutat. https://doi.org/10.1002/humu.21220 (2010).

  112. Kogoma, T. & von Meyenburg, K. The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J. 2, 463–468 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ogawa, T., Pickett, G. G., Kogoma, T. & Kornberg, A. RNase H confers specificity in the dnaA-dependent initiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro. Proc. Natl Acad. Sci. USA 81, 1040–1044 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reyes, A. et al. RNASEH1 mutations impair mtDNA replication and cause adult-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 97, 186–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Holmes, J. B. et al. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc. Natl Acad. Sci. USA 112, 9334–9339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Hartvig, L. & Christiansen, J. Intrinsic termination of T7 RNA polymerase mediated by either RNA or DNA. EMBO J. 15, 4767–4774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. You, L. et al. Structural basis for intrinsic transcription termination. Nature 613, 783–789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nudler, E. & Gottesman, M. E. Transcription termination and anti-termination in E. coli. Genes Cell 7, 755–768 (2002).

    Article  CAS  Google Scholar 

  120. Martin, F. H. & Tinoco, I. DNA–RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295–2299 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Itoh, T. & Tomizawa, J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl Acad. Sci. USA 77, 2450–2454 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kües, U. & Stahl, U. Replication of plasmids in Gram-negative bacteria. Microbiol. Rev. 53, 491–516 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Falkenberg, M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 62, 287–296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kasamatsu, H., Robberson, D. L. & Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl Acad. Sci. USA 68, 2252–2257 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nicholls, T. J. & Minczuk, M. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 56, 175–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Doda, J. N., Wright, C. T. & Clayton, D. A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl Acad. Sci. USA 78, 6116–6120 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Behar, D. M. et al. A novel 154-bp deletion in the human mitochondrial DNA control region in healthy individuals. Hum. Mutat. 29, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ojala, D. & Attardi, G. Identification of discrete polyadenylate-containing RNA components transcribed from HeLa cell mitochondrial DNA. Proc. Natl Acad. Sci. USA 71, 563–567 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cantatore, P., Polosa, P. L., Mustich, A., Petruzzella, V. & Gadaleta, M. N. Faithful and highly efficient RNA synthesis in isolated mitochondria from rat liver. Curr. Genet. 14, 477–482 (1988).

    Article  CAS  PubMed  Google Scholar 

  130. Zhu, X. et al. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell 185, 2309–2323.e24 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Razew, M. et al. Structural analysis of mtEXO mitochondrial RNA degradosome reveals tight coupling of nuclease and helicase components. Nat. Commun. 9, 97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Silva, S., Camino, L. P. & Aguilera, A. Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proc. Natl Acad. Sci. USA 115, 11024–11029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. & Goodrich, J. A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Wassarman, K. M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, J. et al. 6S RNA mimics B-form DNA to regulate Escherichia coli RNA polymerase. Mol. Cell 68, 388–397.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Malarkey, C. S. & Churchill, M. E. A. The high mobility group box: the ultimate utility player of a cell. Trends Biochem. Sci. 37, 553–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Farge, G. et al. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat. Commun. 3, 1013 (2012).

    Article  PubMed  Google Scholar 

  139. Campbell, C. T., Kolesar, J. E. & Kaufman, B. A. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta Gene Regul. Mech. 1819, 921–929 (2012).

    Article  CAS  Google Scholar 

  140. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA 112, 11288–11293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gangelhoff, T. A., Mungalachetty, P. S., Nix, J. C. & Churchill, M. E. A. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res. 37, 3153–3164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wong, T. S. et al. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res. 37, 6765–6783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brüser, C., Keller-Findeisen, J. & Jakobs, S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep. 37, 110000 (2021).

    Article  PubMed  Google Scholar 

  144. Isaac, R. S. et al. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Preprint at bioRxiv https://doi.org/10.1101/2022.09.25.509398 (2022)

  145. Lu, B. et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol. Cell 49, 121–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Peralta, S., Wang, X. & Moraes, C. T. Mitochondrial transcription: lessons from mouse models. Biochim. Biophys. Acta 1819, 961–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Larsson, N.-G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Ekstrand, M. I. et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Bonekamp, N. A. et al. High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo. Life Sci. Alliance 4, e202101034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Park, C. B. et al. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130, 273–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  153. Filograna, R. et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci. Adv. 5, eaav9824 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Alam, T. I. et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31, 1640–1645 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Kruse, B., Narasimhan, N. & Attardi, G. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58, 391–397 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Maria Falkenberg.

Ethics declarations

Competing interests

M.F. and C.M.G. are co-founders and shareholders of Pretzel Therapeutics.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Dmitry Temiakov, Hong Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B.G., Gustafsson, C.M. & Falkenberg, M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 25, 119–132 (2024). https://doi.org/10.1038/s41580-023-00661-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00661-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing