Skip to main content
Log in

Nonreversible Motion of a System of Interacting Bodies Along a Rough Horizontal Straight Line

  • CONTROL IN DETERMINISTIC SYSTEMS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A locomotion system is considered in the form of a chain of a finite number of bodies (materi along points) moving in a straight line on a horizontal rough plane due to the forces of interaction between the bodies. These forces serve as the control variables. Dry Coulomb friction acts between the bodies and the plane. The necessary and sufficient conditions are obtained under which the nonreversible motion of all bodies of the system for the same distance is possible under the assumption that in the initial and final positions the velocities of all bodies are equal to zero. Nonreversible motion is understood as a motion in which none of the bodies changes the direction of their velocity in the process of moving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. F. L. Chernous’ko, “The motion of a multilink system along a horizontal plane,” J. Appl. Math. Mech. 64 (1), 5–15 (2000).

    Article  Google Scholar 

  2. F. L. Chernous’ko, “The wavelike motion of a multilink system on a horizontal plane,” J. Appl. Math. Mech. 64 (4), 497–508 (2000).

    Article  Google Scholar 

  3. F. L. Chernous’ko, “The motion of a three-link system along a plane,” J. Appl. Math. Mech. 65 (1), 13–18 (2001).

    Article  Google Scholar 

  4. F. L. Chernous’ko, “Controllable motions of a two-link mechanism along a horizontal plane,” J. Appl. Math. Mech. 65 (4), 565–577 (2001).

    Article  MathSciNet  Google Scholar 

  5. F. L. Chernous’ko and N. N. Bolotnik, Dynamics of Mobile Systems with Controlled Configuration (Fizmatlit, Moscow, 2022) [in Russian].

    Google Scholar 

  6. L. Yu. Vorochaeva, G. S. Naumov, and S. F. Yatsun, “Simulation of motion of a three-link robot with controlled friction forces on a horizontal rough surface,” J. Comput. Syst. Sci. Int. 54 (1), 151–164 (2015).

    Article  MathSciNet  Google Scholar 

  7. L. Yu. Vorochaeva, G. Ya. Panovko, S. I. Savin, and A. S. Yatsun, “Simulation of motion of a three-link robot with controlled friction forces on a horizontal rough surface,” Probl. Mashinostr. Nadezhnosti Mashin, No. 6, 12–19 (2017).

  8. M. V. Golitsyna, “Periodic regime of motion of a vibratory robot under a control constraint,” Mech. Solids 53 (1), 49–59 (2018).

    Article  Google Scholar 

  9. M. V. Golitsyna and V. A. Samsonov, “Estimating the domain of admissible parameters of a control system of a vibratory robot,” J. Comput. Syst. Sci. Int. 57 (2), 255–272 (2018).

    Article  MathSciNet  Google Scholar 

  10. A. G. Egorov and O. S. Zakharova, “The energy-optimal motion of a vibration-driven robot in a resistive medium,” J. Appl. Math. Mech. 74 (4) 443–451 (2010).

    Article  MathSciNet  Google Scholar 

  11. A. G. Egorov and O. S. Zakharova, “The energy-optimal motion of a vibration-driven robot in a medium with a inherited law of resistance,” J. Comput. Syst. Sci. Int. 54 (3), 495–503 (2015).

    Article  MathSciNet  Google Scholar 

  12. A. P. Ivanov and A. V. Sakharov, “Dynamics of rigid body, carrying moving masses and rotor, on a rough plane,” Nelineinaya Din. 8 (4), 763–772 (2012).

    Article  Google Scholar 

  13. A. V. Sakharov, “Rotation of a body with two movable internal masses on a rough plane,” J. Appl. Math. Mech. 79 (2), 132–141 (2015).

    Article  MathSciNet  Google Scholar 

  14. M. Z. Dosaev, L. A. Klimina, V. A. Samsonov, and Yu. D. Selyutsky, “Plane-parallel motion of a snake robot in the presence of anisotropic dry friction and a single control input,” J. Comput. Syst. Sci. Int. 61 (5), 858–867 (2022).

    Article  MathSciNet  Google Scholar 

  15. J. Xu and H. Fang, “Improving performance: Recent progress on vibration-driven locomotion systems,” Nonlinear Dyn. 98 (4), 2651–2669 (2019).

    Article  Google Scholar 

  16. X. Zhan, J. Xu, and H. Fang, “Planar locomotion of a vibration-driven system with two internal masses,” Appl. Math. Modell. 40 (2), 871–885 (2016).

    Article  Google Scholar 

  17. X. Zhan, J. Xu, and H. Fang, “A vibration-driven planar locomotion robot-shell,” Robotica 36 (9), 1402–1420 (2018).

    Article  Google Scholar 

  18. K. Zimmermann, I. Zeidis, and C. Behn, Mechanics of Terrestrial Locomotion with a Focus on Nonpedal Motion Systems (Springer, Heidelberg, 2010).

    Google Scholar 

  19. J. Steigenberger and C. Behn, Worm-Like Locomotion Systems: an Intermediate Theoretical Approach (Oldenbourg Wissenschaftsverlag, Munich, 2012).

    Book  Google Scholar 

  20. Y. Liu, S. Islam, E. Pavlovskaya, and M. Wiercigroch, “Optimization of the vibro-impact capsule system,” J. Mech. Eng. 62, 430–439 (2016).

    Article  Google Scholar 

  21. Y. Liu, E. Pavlovskaia, D. Hendry, and M. Wiercigroch, “Vibro-impact responses of capsule system with various friction models,” Int. J. Mech. Sci. 72, 39–54 (2013).

    Article  Google Scholar 

  22. Y. Liu, E. Pavlovskaya, and M. Wiercigroch, “Experimental verification of the vibro-impact capsule model,” Nonlinear Dyn. 83, 1029–1041 (2016).

    Article  Google Scholar 

  23. Y. Liu, E. Pavlovskaia, M. Wiercigroch, and Z. K. Peng, “Forward and backward motion control of a vibro-impact capsule system,” Int. J. Nonlinear Mech. 70, 30–46 (2015).

    Article  Google Scholar 

  24. Y. Liu, M. Wiercigroch, E. Pavlovskaia, and Y. Yu, “Modelling of a vibro-impact capsule system,” Int. J. Mech. Sci. 66, 2–11 (2013).

    Article  Google Scholar 

  25. F. L. Chernous’ko, “The optimum rectilinear motion of a two-mass system,” J. Appl. Math. Mech. 66 (1), 1–7 (2002).

    Article  MathSciNet  Google Scholar 

  26. F. L. Chernous’ko, “Analysis and optimization of the rectilinear motion of a two-body system,” J. Appl. Math. Mech. 75 (5), 493–500 (2011).

    Article  MathSciNet  Google Scholar 

  27. T. Yu. Figurina, “Optimal control of system of material points in a straight line with dry friction,” J. Comput. Syst. Sci. Int. 54 (5), 671–677 (2015).

    Article  MathSciNet  Google Scholar 

  28. F. L. Chernous’ko, “Translational motion of a chain of bodies in a resistive medium,” J. Appl. Math. Mech. 81 (4), 256–261 (2017).

    Article  MathSciNet  Google Scholar 

  29. K. Zimmermann, I. Zeidis, N. Bolotnik, and M. Pivovarov, “Dynamics of a two-module vibration-driven system moving along a rough horizontal plane,” Multibody Syst. Dyn. 22, 199–219 (2009).

    Article  MathSciNet  Google Scholar 

  30. K. Zimmermann, I. Zeidis, M. Pivovarov, and C. Behn, “Motion of two interconnected mass points under action of non-symmetric viscous friction,” Arch. Appl. Mech. 80 (11), 1317–1328 (2010).

    Article  Google Scholar 

  31. N. Bolotnik, M. Pivovarov, I. Zeidis, and K. Zimmermann, “The undulatory motion of a chain of particles in a resistive medium,” Z. Angew. Math. Mech. 91 (4), 259–275 (2011).

    Article  MathSciNet  Google Scholar 

  32. N. Bolotnik, M. Pivovarov, I. Zeidis, and K. Zimmermann, “The undulatory motion of a chain of particles in a resistive medium in the case of a smooth excitation mode,” Z. Angew. Math. Mech. 93 (12), 895–913 (2013).

    Article  MathSciNet  Google Scholar 

  33. N. Bolotnik, M. Pivovarov, I. Zeidis, and K. Zimmermann, “The motion of a two-body limbless locomotor along a straight line in a resistive medium in the case of a smooth excitation mode,” Z. Angew. Math. Mech. 96 (4), 429–452 (2016).

    Article  Google Scholar 

  34. N. Bolotnik, P. Schorr, I. Zeidis, and K. Zimmermann, “Periodic locomotion of a two-body crawling system along a straight line on a rough inclined plane,” Z. Angew. Math. Mech. 98 (11), 1930–1946 (2018).

    Article  MathSciNet  Google Scholar 

  35. G. Wagner and E. Lauga, “Crawling scallop: Friction-based locomotion with one degree of freedom,” J. Theor. Biol. 324, 42–51 (2013).

    Article  MathSciNet  Google Scholar 

  36. N. N. Bolotnik, P. A. Gubko, and T. Yu. Figurina, " Possibility of a non-reverse periodic rectilinear motion of a two-body system on a rough plane," Mech. Solids 53 (1), 7–15 (2018).

    Article  Google Scholar 

Download references

Funding

This study was carried out in accordance with state assignment АААА-А20-120011690138-6 and was partially supported by the Russian Foundation for Basic Research, project nos. 20-01-00378-a and 21-51-12004-NNIO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Bolotnik or T. Yu. Figurina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotnik, N.N., Figurina, T.Y. Nonreversible Motion of a System of Interacting Bodies Along a Rough Horizontal Straight Line. J. Comput. Syst. Sci. Int. 62, 434–444 (2023). https://doi.org/10.1134/S1064230723030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723030024

Navigation