Skip to main content
Log in

Dynamical Diquarks and Baryon Transition Form Factors

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The role and impact of dynamical diquark correlations that appear within three-quark bound states (baryons), owing largely to the mechanisms responsible for the emergence of hadron masses, can be addressed via the computation of baryon electromagnetic transition form factors (TFFs). Herein, we describe a procedure based upon continuum Schwinger methods to evaluate such physical objects. For illustration purposes, we specialize on the \(\gamma ^{(*)}p \rightarrow N(1535)\frac{1}{2}^-\) TFF, in which the interference between the different diquark correlations plays a determining role. Albeit limited to a symmetry-preserving treatment of a vector \(\otimes \) vector contact-interaction model of quantum chromodynamics, both the mathematical procedure and numerical results serve as benchmarks for more sophisticated calculations to be developed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The smallest value of \(m_H\) corresponds to the ground-state.

  2. If flavor symmetry is not assumed, one need to take the individual contributions of each quark flavor, weighted by the corresponding electric charges.

  3. The Dirac and Pauli form factors can be recast in terms of the electric (\(G_E\)) and magnetic (\(G_M\)) Sach form factors  [44].

References

  1. M.Y. Barabanov et al., Diquark correlations in hadron physics: origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021). https://doi.org/10.1016/j.ppnp.2020.103835. arXiv:2008.07630 [hep-ph]

    Article  Google Scholar 

  2. M. Gell-Mann, A schematic model of Baryons and mesons. Phys. Lett. 8, 214–215 (1964). https://doi.org/10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  3. R.T. Cahill, C.D. Roberts, J. Praschifka, Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989). https://doi.org/10.1071/PH890129

    Article  ADS  Google Scholar 

  4. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016). https://doi.org/10.1016/j.ppnp.2016.07.001. arXiv:1606.09602 [hep-ph]

    Article  ADS  Google Scholar 

  5. G. Eichmann, Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011). https://doi.org/10.1103/PhysRevD.84.014014. arXiv:1104.4505 [hep-ph]

    Article  ADS  Google Scholar 

  6. S.x. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of light- and heavy-baryons. Few Body Syst. 60(2), 26 (2019). https://doi.org/10.1007/s00601-019-1488-x. arXiv:1902.00026 [nucl-th]

  7. C.J. Burden, R.T. Cahill, J. Praschifka, Baryon structure and QCD: nucleon calculations. Austral. J. Phys. 42, 147–159 (1989). https://doi.org/10.1071/PH890147

    Article  ADS  Google Scholar 

  8. C.D. Roberts, Hadron structure using continuum Schwinger function methods. Few Body Syst. 64(3), 51 (2023). https://doi.org/10.1007/s00601-023-01837-6. arXiv:2304.00154 [hep-ph]

    Article  ADS  Google Scholar 

  9. D.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Nucleon resonance electroexcitation amplitudes and emergent Hadron mass. Particles 6(1), 416–439 (2023). https://doi.org/10.3390/particles6010023. arXiv:2301.07777 [hep-ph]

    Article  Google Scholar 

  10. I.G. Aznauryan, et al., Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013). https://doi.org/10.1142/S0218301313300154. arXiv:1212.4891 [nucl-th]

  11. V.I. Mokeev, P. Achenbach, V.D. Burkert, D.S. Carman, R.W. Gothe, A.N. Hiller Blin, E.L. Isupov, K. Joo, K. Neupane, A. Trivedi, First Results on Nucleon Resonance Electroexcitation Amplitudes from \(ep\rightarrow e^{\prime }\pi ^+\pi ^-p^{\prime }\) Cross Sections at \(W\) from 1.4-1.7 GeV and \(Q^2\) from 2.0-5.0 GeV\(^2\) (2023). arXiv:2306.13777 [nucl-ex]

  12. R. Abir, et al., The case for an EIC Theory Alliance: Theoretical Challenges of the EIC (2023). arXiv:2305.14572 [hep-ph]

  13. G. Ramalho, M.T. Peña, Electromagnetic Transition Form Factors of Baryon Resonances (2023). arXiv:2306.13900 [hep-ph]

  14. M. Ding, C.D. Roberts, S.M. Schmidt, Emergence of Hadron mass and structure. Particles 6, 57–120 (2023). arXiv:2211.07763 [hep-ph]

    Article  Google Scholar 

  15. N. Isgur, G. Karl, P Wave Baryons in the Quark model. Phys. Rev. D 18, 4187 (1978). https://doi.org/10.1103/PhysRevD.18.4187

    Article  ADS  Google Scholar 

  16. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons. Phys. Rev. Lett. 18, 507–509 (1967). https://doi.org/10.1103/PhysRevLett.18.507

    Article  ADS  Google Scholar 

  17. C. Chen, G.I. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and structure of octet and decuplet baryons and their positive-parity excitations. Phys. Rev. D 100(5), 054009 (2019). https://doi.org/10.1103/PhysRevD.100.054009. arXiv:1901.04305 [nucl-th]

  18. K. Raya, L.X. Gutiérrez-Guerrero, A. Bashir, L. Chang, Z.F. Cui, Y. Lu, C.D. Roberts, J. Segovia, Dynamical diquarks in the \({\varvec {\gamma ^{(\ast )} p\rightarrow N(1535)\tfrac{1}{2}^-}}\) transition. Eur. Phys. J. A 57(9), 266 (2021). https://doi.org/10.1140/epja/s10050-021-00574-w. arXiv:2108.02306 [hep-ph]

    Article  ADS  Google Scholar 

  19. Y. Lu, C. Chen, C.D. Roberts, J. Segovia, S.S. Xu, H.S. Zong, Parity partners in the baryon resonance spectrum. Phys. Rev. C 96(1), 015208 (2017). https://doi.org/10.1103/PhysRevC.96.015208. arXiv:1705.03988 [nucl-th]

  20. C. Chen, B. El-Bennich, C.D. Roberts, S.M. Schmidt, J. Segovia, S. Wan, Structure of the nucleon’s low-lying excitations. Phys. Rev. D 97(3), 034016 (2018). https://doi.org/10.1103/PhysRevD.97.034016. arXiv:1711.03142 [nucl-th]

  21. J. Segovia, C. Chen, I.C. Cloët, C.D. Roberts, S.M. Schmidt, S. Wan, Elastic and Transition Form Factors of the \(\Delta (1232)\). Few Body Syst. 55, 1–33 (2014). https://doi.org/10.1007/s00601-013-0734-x. arXiv:1308.5225 [nucl-th]

  22. D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012). https://doi.org/10.1103/PhysRevC.85.025205. arXiv:1112.2212 [nucl-th]

  23. K. Raya, L.X. Gutiérrez, A. Bashir, Structure of the orbital excited \(N^*\) from the Schwinger-Dyson equations. Few Body Syst. 59(5), 89 (2018). https://doi.org/10.1007/s00601-018-1414-7. arXiv:1802.00046 [nucl-th]

  24. H.L.L. Roberts, L. Chang, I.C. Cloet, C.D. Roberts, Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011). https://doi.org/10.1007/s00601-011-0225-x. arXiv:1101.4244 [nucl-th]

  25. C. Chen, L. Chang, C.D. Roberts, S. Wan, D.J. Wilson, Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012). https://doi.org/10.1007/s00601-012-0466-3. arXiv:1204.2553 [nucl-th]

  26. P.L. Yin, Z.F. Cui, C.D. Roberts, J. Segovia, Masses of positive- and negative-parity hadron ground-states, including those with heavy quarks. Eur. Phys. J. C 81(4), 327 (2021). https://doi.org/10.1140/epjc/s10052-021-09097-6. arXiv:2102.12568 [hep-ph]

    Article  ADS  Google Scholar 

  27. L.X. Gutiérrez-Guerrero, G. Paredes-Torres, A. Bashir, Mesons and baryons: Parity partners. Phys. Rev. D 104(9), 094013 (2021). https://doi.org/10.1103/PhysRevD.104.094013. arXiv:2109.09058 [hep-ph]

    Article  ADS  Google Scholar 

  28. L.X. Gutierrez-Guerrero, A. Bashir, I.C. Cloet, C.D. Roberts, Pion form factor from a contact interaction. Phys. Rev. C 81, 065202 (2010). https://doi.org/10.1103/PhysRevC.81.065202. arXiv:1002.1968 [nucl-th]

  29. H.L.L. Roberts, C.D. Roberts, A. Bashir, L.X. Gutierrez-Guerrero, P.C. Tandy, Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010). https://doi.org/10.1103/PhysRevC.82.065202. arXiv:1009.0067 [nucl-th]

  30. A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD running coupling. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003. arXiv:1604.08082 [hep-ph]

    Article  Google Scholar 

  31. Z.F. Cui, J.L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44(8), 083102 (2020). https://doi.org/10.1088/1674-1137/44/8/083102. arXiv:1912.08232 [hep-ph]

    Article  ADS  Google Scholar 

  32. A.C. Aguilar, F. De Soto, M.N. Ferreira, J. Papavassiliou, F. Pinto-Gómez, C.D. Roberts, J. Rodríguez-Quintero, Schwinger mechanism for gluons from lattice QCD. Phys. Lett. B 841, 137906 (2023). https://doi.org/10.1016/j.physletb.2023.137906. arXiv:2211.12594 [hep-ph]

    Article  MathSciNet  Google Scholar 

  33. D. Ebert, T. Feldmann, H. Reinhardt, Extended NJL model for light and heavy mesons without q - anti-q thresholds. Phys. Lett. B 388, 154–160 (1996). https://doi.org/10.1016/0370-2693(96)01158-6. arXiv:hep-ph/9608223

    Article  ADS  Google Scholar 

  34. Z. Xing, K. Raya, L. Chang, Quark anomalous magnetic moment and its effects on the \(\rho \) meson properties. Phys. Rev. D 104(5), 054038 (2021). https://doi.org/10.1103/PhysRevD.104.054038. arXiv:2107.05158 [nucl-th]

  35. R.T. Cahill, C.D. Roberts, J. Praschifka, Calculation of Diquark masses in QCD. Phys. Rev. D 36, 2804 (1987). https://doi.org/10.1103/PhysRevD.36.2804

    Article  ADS  Google Scholar 

  36. H.L.L. Roberts, A. Bashir, L.X. Gutierrez-Guerrero, C.D. Roberts, D.J. Wilson, pi- and rho-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011). https://doi.org/10.1103/PhysRevC.83.065206. arXiv:1102.4376 [nucl-th]

  37. L. Chang, C.D. Roberts, Sketching the Bethe-Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009). https://doi.org/10.1103/PhysRevLett.103.081601. arXiv:0903.5461 [nucl-th]

  38. S.X. Qin, C.D. Roberts, Resolving the Bethe-Salpeter Kernel. Chin. Phys. Lett. 38(7), 071201 (2021). https://doi.org/10.1088/0256-307X/38/7/071201. arXiv:2009.13637 [hep-ph]

    Article  ADS  Google Scholar 

  39. M.A. Bedolla, J.J. Cobos-Martínez, A. Bashir, Charmonia in a contact interaction. Phys. Rev. D 92(5), 054031 (2015). https://doi.org/10.1103/PhysRevD.92.054031. arXiv:1601.05639 [hep-ph]

    Article  ADS  Google Scholar 

  40. F.E. Serna, B. El-Bennich, G.a. Krein, Charmed mesons with a symmetry-preserving contact interaction. Phys. Rev. D 96(1), 014013 (2017). https://doi.org/10.1103/PhysRevD.96.014013. arXiv:1703.09181 [hep-ph]

  41. Z. Xing, L. Chang, Symmetry preserving contact interaction treatment of the kaon. Phys. Rev. D 107(1), 014019 (2023). https://doi.org/10.1103/PhysRevD.107.014019. arXiv:2210.12452 [hep-ph]

    Article  ADS  Google Scholar 

  42. A. Buck, R. Alkofer, H. Reinhardt, Baryons as bound states of diquarks and quarks in the Nambu-Jona-Lasinio model. Phys. Lett. B 286, 29–35 (1992). https://doi.org/10.1016/0370-2693(92)90154-V

    Article  ADS  Google Scholar 

  43. S.S. Xu, C. Chen, I.C. Cloet, C.D. Roberts, J. Segovia, H.S. Zong, Contact-interaction Faddeev equation and, inter alia , proton tensor charges. Phys. Rev. D 92(11), 114034 (2015). https://doi.org/10.1103/PhysRevD.92.114034. arXiv:1509.03311 [nucl-th]

  44. G. Eichmann, G. Ramalho, Nucleon resonances in Compton scattering. Phys. Rev. D 98(9), 093007 (2018). https://doi.org/10.1103/PhysRevD.98.093007. arXiv:1806.04579 [hep-ph]

    Article  ADS  Google Scholar 

  45. Z.F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, Nucleon elastic form factors at accessible large spacelike momenta. Phys. Rev. D 102(1), 014043 (2020). https://doi.org/10.1103/PhysRevD.102.014043. arXiv:2003.11655 [hep-ph]

    Article  ADS  Google Scholar 

  46. C. Chen, Y. Lu, D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, Nucleon-to-Roper electromagnetic transition form factors at large \(Q^2\). Phys. Rev. D 99(3), 034013 (2019). https://doi.org/10.1103/PhysRevD.99.034013. arXiv:1811.08440 [nucl-th]

  47. I.G. Aznauryan et al., Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009). https://doi.org/10.1103/PhysRevC.80.055203. arXiv:0909.2349 [nucl-ex]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Ministerio Español de Ciencia e Innovación under grant No. PID2019-107844GB-C22; and Junta de Andalucía under contract Nos. Operativo FEDER Andalucía 2014-2020 UHU-1264517, P18-FR-5057 and also PAIDI FQM-370.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this manuscript.

Corresponding author

Correspondence to Khépani Raya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raya, K., Segovia, J. Dynamical Diquarks and Baryon Transition Form Factors. Few-Body Syst 64, 78 (2023). https://doi.org/10.1007/s00601-023-01858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01858-1

Navigation