Skip to main content
Log in

X-ray Halo of the Pulsar 4U 1538–52 from SRG Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the first results of the SRG observation of the pulsar 4U 1538–52 based on ARC-XC and eROSITA data. An extended emission in the form of a halo is detected around the source in the 0.5–8 keV energy band. Our simulation has shown that its surface brightness distribution can be described by a two-component model composed of a flat disk \({\sim}250^{\prime\prime}\) in radius and a \(\beta\)-model with a characteristic size \({\sim}480^{\prime\prime}\). We have constructed a broadband spectrum of 4U 1538–52 in the energy range 0.5–30 keV, which can be fitted by a weakly absorbed (\(N_{\textrm{H}}\simeq 0.7\times 10^{22}\) cm\({}^{-2}\)) power law with a high-energy cutoff. In addition, iron emission lines are detected in the pulsar spectrum at 6–7 keV. We show that the observed halo spectrum is considerably softer (a power-law index \({\simeq}2.8\)) than the pulsar spectrum (a power-law index \({\simeq}0.9\)), consistent with the predictions of theoretical models for the X-ray scattering by dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. N. Aftab, B. Paul, and P. Kretschmar, Astrophys. J. Suppl. Ser. 243, 29 (2019).

    Article  ADS  Google Scholar 

  2. K. A. Arnaud, ASP Conf. Ser. 101, 17 (1996).

  3. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  4. R. H. Becker, J. H. Swank, E. A. Boldt, S. S. Holt, S. H. Pravdo, J. R. Saba, and P. J. Serlemitsos, Astrophys. J. Lett. 216, L11 (1977).

    Article  ADS  Google Scholar 

  5. H. Brunner, T. Liu, G. Lamer, A. Georgakakis, A. Merloni, et al., Astron. Astrophys. 661, A1 (2022).

    Article  Google Scholar 

  6. W. Cash, Astrophys. J. 228, 939 (1979).

    Article  ADS  Google Scholar 

  7. G. W. Clark, Astrophys. J. 610, 956 (2004).

    Article  ADS  Google Scholar 

  8. G. W. Clark, J. W. Woo, F. Nagase, K. Makishima, and T. Sakao, Astrophys. J. 353, 274 (1990).

    Article  ADS  Google Scholar 

  9. G. W. Clark, J. W. Woo, and F. Nagase, Astrophys. J. 422, 336 (1994).

    Article  ADS  Google Scholar 

  10. L. R. Cominsky and F. Moraes, Astrophys. J. 370, 670 (1991).

    Article  ADS  Google Scholar 

  11. P. J. N. Davison, Mon. Not. R. Astron. Soc. 179, 35 (1977).

    Article  ADS  Google Scholar 

  12. B. T. Draine, Astrophys. J. 598, 1026 (2003).

    Article  ADS  Google Scholar 

  13. M. Falanga, E. Bozzo, A. Lutovinov, J. M. Bonnet-Bidaud, Y. Fetisova, and J. Puls, Astron. Astrophys. 809, 66 (2015).

    Google Scholar 

  14. P. Freeman, St. Doe, and A. Siemiginowska, Proc. SPIE 4477, 76 (2001).

    Article  ADS  Google Scholar 

  15. A. Fruscione, J. C. McDowell, G. E. Allen, N. S. Brickhouse, D. J. Burke, et al., Proc. SPIE 6270, 62701V (2006).

    Article  Google Scholar 

  16. R. Giacconi, S. Murray, H. Gursky, E. Kellogg, E. Schreier, T. Matilsky, D. Koch, and H. Tananbaum, Astrophys. J. Suppl. Ser. 27, 37 (1974).

    Article  ADS  Google Scholar 

  17. HEASARC, HEAsoft: Unified Release of FTOOLS and XANADU (NASA High Energy Astrophys. Sci. Archive Res. Center, 2014).

    Google Scholar 

  18. P. B. Hemphill, R. E. Rothschild, F. Fürst, V. Grinberg, D. Klochkov, P. Kretschmar, et al., Astrophys. J. 458, 2745 (2016).

    Google Scholar 

  19. P. B. Hemphill, R. E. Rothschild, D. M. Cheatham, F. Fürst, P. Kretschmar, et al., Astrophys. J. 873, 62 (2019).

    Article  ADS  Google Scholar 

  20. HI4PI Collab., N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, B. Winkel, J. Bailin, M. R. Calabretta, et al., Astron. Astrophys. 594 (2016).

  21. S. A. Ilovaisky, C. Chevalier, and C. Motch, Astron. Astrophys. 71, L17 (1979).

    ADS  Google Scholar 

  22. R. A. Krivonos, J. A. Tomsick, F. E. Bauer, F. K. Baganoff, N. M. Barriere, et al., Astrophys. J. 781, 107 (2014).

    Article  ADS  Google Scholar 

  23. C. Malacaria, P. Jenke, O. J. Roberts, C. A. Wilson-Hodge, W. H. Cleveland, B. Mailyan, and GBM Accreting Pulsars Program Team, Astrophys. J. 896, 90 (2020).

    Article  ADS  Google Scholar 

  24. J. S. Mathis and C.-W. Lee, Astrophys. J. 376, 490 (1991).

    Article  ADS  Google Scholar 

  25. C. W. Mauche and P. Gorenstein, Astrophys. J. 302, 371 (1986).

    Article  ADS  Google Scholar 

  26. F. Nagase, T. Dotani, T. Endo, H. Ozawa, S. Uno, T. Kotani, and T. Mihara, Am. Inst. Phys. Conf. Ser. 599, 794 (2001).

    ADS  Google Scholar 

  27. J. W. Overbeck, Astrophys. J. 141, 864 (1965).

    Article  ADS  Google Scholar 

  28. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, O. Batanov, Yu. Bodnar, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  29. P. Predehl and J. H. M. M. Schmitt, Astron. Astrophys. 293, 889 (1995).

    ADS  Google Scholar 

  30. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, H. Böhringer, A. Bogomolov, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  31. A. P. Reynolds, S. A. Bell, and R. W. Hilditch, Mon. Not. R. Astron. Soc. 256, 631 (1992).

    Article  ADS  Google Scholar 

  32. N. R. Robba, L. Burderi, T. Di Salvo, R. Iaria, and G. Cusumano, Astrophys. J. 562, 950 (2001).

    Article  ADS  Google Scholar 

  33. J. J. Rodes-Roca, J. M. Torrejón, I. Kreykenbohm, S. Martínez Núñez, A. Camero-Arranz, and G. Bernabéu, Astron. Astrophys. 508, 395 (2009).

    Article  ADS  Google Scholar 

  34. J. J. Rodes-Roca, K. L. Page, J. M. Torrejón, J. P. Osborne, and G. Bernabéu, Astron. Astrophys. 526, A64 (2011).

    Article  ADS  Google Scholar 

  35. J. J. Rodes-Roca, J. M. Torrejón, S. Martínez-Nuñez, A. Giménez-García, and G. Bernabéu, Astron. Nachr. 225, 804 (2014).

    Article  ADS  Google Scholar 

  36. R. K. Smith and E. Dwek, Astrophys. J. 503, 831 (1998).

    Article  ADS  Google Scholar 

  37. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, H. Brunner, R. Burenin, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  38. L. A. Valencic and R. K. Smith, Astrophys. J. 809, 66 (2015).

    Article  ADS  Google Scholar 

  39. D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).

    Article  ADS  Google Scholar 

  40. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  41. J. W. Woo, G. W. Clark, and F. Nagase, Am. Astron. Soc. Meet. Abstr. 180, 44 (1992).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study we used observational data from the ART-XC and eROSITA telescopes onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussuriysk, and Baykonur, funded by Roskosmos. The team of the Mikhail Pavlinsky ART-XC telescope thanks the Roskosmos Space Corporation, the Russian Academy of Sciences, and the Rosatom Space Corporation for their support of the designing and building of the telescope. The eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The eROSITA data used in this work were processed using the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium. A. Shtykovsky thanks the Russian Foundation for Basic Research for its support (project no. 20-32-90242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Shtykovsky.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtykovsky, A.E., Lutovinov, A.A., Krivonos, R.A. et al. X-ray Halo of the Pulsar 4U 1538–52 from SRG Data. Astron. Lett. 49, 240–248 (2023). https://doi.org/10.1134/S1063773723050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723050031

Keywords:

Navigation