Skip to main content

Advertisement

Log in

Dynamic patterns of histone lactylation during early tooth development in mice

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Kla:

histone lysine lactylation

K:

lysine

IEE:

inner enamel epithelium

SIRT1-3:

silent information regulator1-3

HDAC1-3:

histone deacetylase 1–3

EDTA:

ethylenediamine tetra-acetic acid

PBS:

phosphate buffered saline

BSA:

bovine serum albumin

OEE:

outer enamel epithelium

SI:

stratum intermedium

SR:

stellate reticulum

PEK:

primary enamel knot

LaCL:

labial cervical loop

LiCL:

lingual cervical loop

References

  • Alappat S, Zhang ZY, Chen YP (2003) Msx homeobox gene family and craniofacial development. Cell Res 13:429–442

    Article  CAS  PubMed  Google Scholar 

  • Byers MR (1980) Development of sensory innervation in dentin. J Comp Neurol 191:413–427

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gao B, Zhou X (2012) Expression patterns of histone acetyltransferases p300 and CBP during murine tooth development. In Vitro Cell Dev Biol Anim 48:61–68

    Article  PubMed  Google Scholar 

  • Chen AN, Luo Y, Yang YH, Fu JT, Geng XM, Shi JP, Yang J (2021) Lactylation, a Novel Metabolic Reprogramming Code: current status and prospects. Front Immunol 12:688910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Jin H, Kim JY, Lim KT, Choung HW, Park JY, Chung JH, Choung PH (2014) Hypoxia promotes CEMP1 expression and induces cementoblastic differentiation of human dental stem cells in an HIF-1-dependent manner. Tissue Eng Part A 20:410–423

    Article  CAS  PubMed  Google Scholar 

  • Dai SK, Liu PP, Li X, Jiao LF, Teng ZQ, Liu CM (2022) Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development 149

  • Guven G, Gunhan O, Akbulut E, Cehreli ZC (2007) Investigation of proliferative activity in the developing human tooth using Ki-67 immunostaining. Med Princ Pract 16:454–459

    Article  PubMed  Google Scholar 

  • Hildebrand C, Fried K, Tuisku F, Johansson CS (1995) Teeth and tooth nerves. Prog Neurobiol 45:165–222

    Article  CAS  PubMed  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  CAS  PubMed  Google Scholar 

  • Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38:463–469

    CAS  Google Scholar 

  • Jernvall J, Aberg T, Kettunen P, Keränen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Park JY, Choi H, Choung PH (2013) HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng Part A 19:613–624

    Article  CAS  PubMed  Google Scholar 

  • Kettunen P, Løes S, Furmanek T, Fjeld K, Kvinnsland IH, Behar O, Yagi T, Fujisawa H, Vainio S, Taniguchi M, Luukko K (2005) Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 132:323–334

    Article  CAS  PubMed  Google Scholar 

  • Kettunen P, Spencer-Dene B, Furmanek T, Kvinnsland IH, Dickson C, Thesleff I, Luukko K (2007) Fgfr2b mediated epithelial-mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev 124:868–883

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Kim SJ, Kim YS, Kim SY, Park SH, Kim EC (2012) The role of SIRT1 on angiogenic and odontogenic potential in human dental pulp cells. J Endod 38:899–906

    Article  PubMed  Google Scholar 

  • Kimura S, Takeshita N, Oyanagi T, Seki D, Jiang W, Hidaka K, Fukumoto S, Takahashi I, Takano-Yamamoto T (2022) HIF-2α inhibits ameloblast differentiation via Hey2 in tooth development. J Dent Res 101:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Tamura Y, Bawden JW, Tanase S (2001) The immunohistochemical localization of bax and Bcl-2 and their relation to apoptosis during amelogenesis in developing rat molars. Arch Oral Biol 46:557–568

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lesot H, Brook AH (2009) Epithelial histogenesis during tooth development. Arch Oral Biol 54(Suppl 1):S25–33

    Article  CAS  PubMed  Google Scholar 

  • Lumsden AG (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103:155–169

    Article  PubMed  Google Scholar 

  • Mishina Y (2021a) Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal 14

  • Mohamed SS, Atkinson ME (1983) A histological study of the innervation of developing mouse teeth. J Anat 136:735–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Yruela C, Bæk M, Monda F, Olsen CA (2022a) Chiral posttranslational modification to lysine ε-Amino groups. Acc Chem Res 55:1456–1466

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, Jameson ST, Wong J, Olsen CA, Zhao Y (2022b) Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv 8:eabi6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustonen T, Tümmers M, Mikami T, Itoh N, Zhang N, Gridley T, Thesleff I (2002) Lunatic fringe, FGF, and BMP regulate the notch pathway during epithelial morphogenesis of teeth. Dev Biol 248:281–293

    Article  CAS  PubMed  Google Scholar 

  • Nian F, Qian Y, Xu F, Yang M, Wang H, Zhang Z (2022) LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun 615:31–35

    Article  CAS  PubMed  Google Scholar 

  • Pagella P, Jiménez-Rojo L, Mitsiadis TA (2014) Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci 71:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G, De Rosa A, Laino L, Altucci L, Papaccio G (2014) Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32:279–289

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Feng F, Wu J, Fan S, Han J, Wang S, Yang L, Liu W, Wang C, Xu K (2022) Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res 181:106270

    Article  CAS  PubMed  Google Scholar 

  • Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Keränen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  CAS  PubMed  Google Scholar 

  • Viriot L, Peterková R, Vonesch JL, Peterka M, Ruch JV, Lesot H (1997) Mouse molar morphogenesis revisited by three-dimensional reconstruction. III. Spatial distribution of mitoses and apoptoses up to bell-staged first lower molar teeth. Int J Dev Biol 41:679–690

    CAS  PubMed  Google Scholar 

  • Yang J, Wan C, Nie S, Jian S, Sun Z, Zhang L, Chen Z (2013a) Localization of Beclin1 in mouse developing tooth germs: possible implication of the interrelation between autophagy and apoptosis. J Mol Histol 44:619–627

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Zhu LX, Yuan GH, Chen YX, Zhang L, Zhang L, Chen Z (2013b) Autophagy appears during the development of the mouse lower first molar. Histochem Cell Biol 139:109–118

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Toda Nakamura M, Hallett SA, Ueharu H, Zhang H, Kelley K, Fukuda T, Komatsu Y, Mishina Y (2021b) Generation of a new mouse line with conditionally activated signaling through the BMP receptor, ACVR1: a tool to characterize pleiotropic roles of BMP functions. Genesis 59:e23419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Wang P, Cao P, Wang S, Yang Y, Su H, Nashun B (2021c) Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin 14:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, Qiu S, Zhou J, Fan J, Huang H, Gao Q (2023) Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab 5:61–79

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, Zhu L Komatsu Y, and

  • Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman HA, Dai L, Ren B, Roeder RG, Becker L, Zhao Y (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Pan J, Wu P, Huang R, Du W, Zhou Y, Wan M, Fan Y, Xu X, Zhou X, Zheng L, Zhou X (2019) Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019:9159605

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (82170915 and 31500788) to Dr. Jingwen Yang, the Key project of National Natural Science Foundation of China (82230029) to Dr. Zhi Chen.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.M., J.Y.; methodology: M.L. and X.Z.; formal analysis: M.L., Q.Y., and J.Y.; resources: Z.C., J.Y.; funding acquisition: Z.C., J.Y.; original manuscript draft preparation: Q.Y., M.L.; writing, review and editing: Q.Y., Y.M., Z.C., J.Y.; supervision: Z.C., J.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jingwen Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yang, Q., Zuo, H. et al. Dynamic patterns of histone lactylation during early tooth development in mice. J Mol Histol 54, 665–673 (2023). https://doi.org/10.1007/s10735-023-10154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-023-10154-5

Keywords

Navigation