Skip to main content
Log in

Cyclodextringlucanotransferase of the Alkalophilic Strain Caldalkalibacillus mannanilyticus IB-OR17-B1

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

An extracellular cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) has been characterized for the first time in a strain of bacteria of the species Caldalkalibacillus mannanilyticus IB-OR17-B1. The enzyme was isolated from the culture supernatant using ultrafiltration and affinity adsorption on corn starch. The specific activity of the CGTase increased by 18 times as a result of purification with an enzyme yield of 56%. The molecular weight of the isolated enzyme was 70 kDa according to the denaturing electrophoresis in polyacrylamide gel. The CGTase of C. mannanilyticus IB-OR17-B1 demonstrated its maximum cyclizing activity at pH 8 and a temperature of 60°C, respectively, and it was stable in the pH range of 7–10 and temperatures of 70°C or less. The thermal stability of the enzyme under 70°C increased by 10–15% in the presence of 5–10 mM of calcium and magnesium salts. The cations of Ag+, Cu2+, Zn2+, Fe2+ and Fe3+ at a concentration of 5 mM inhibited CGTase activity by 90, 26, 23, 18, and 11%, respectively. Under the optimal conditions and enzyme-substrate ratio 1 U/g the isolated CGTase converted potato starch to mixture of α-, β-and γ-cyclodextrins with weight ratio 38.8 : 52.6 : 8.6 and a yield of 42% in 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Jemli, S., Messaoud, E., Ayadi-Zouari, D., Naili, B., Khemakhem, B., and Bejar, S., Biochem. Eng. J., 2007, vol. 34, no. 1, pp. 44–50. https://doi.org/10.1016/j.bej.2006.11.016

    Article  CAS  Google Scholar 

  2. Aroob, I., Ahmad, N., and Rashid, N., Amylase, 2021, vol. 5, no. 1, pp. 23–37. https://doi.org/10.1515/amylase-2021-0003

    Article  Google Scholar 

  3. Kurkov, S.V. and Loftsson, T., Int. J. Pharm., 2013, vol. 453, no. 1, pp. 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  CAS  PubMed  Google Scholar 

  4. Astray, G., Gonzalez-Barreiro, C., Mejuto, J., Rial-Otero, R., and Simal-Gandara, J., Food Hydrocolloids, 2009, vol. 23, no. 7, pp. 1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001

    Article  CAS  Google Scholar 

  5. Abdel-Naby, M.A., El-Refai, H.A., and Abdel-Fattah, A.F., J. Appl. Microbiol., 2011, vol. 111, no. 5, pp. 1129–1137. https://doi.org/10.1111/j.1365-2672.2011.05136.x

    Article  CAS  PubMed  Google Scholar 

  6. Szejtli, J., Cyclodextrin Technology—Topics in Inclusion Science, Netherlands: Springer Science and Business Media, 2013. https://doi.org/10.1007/978-94-015-7797-7

  7. Czinkoczky, R. and Nemeth, A., Hung. J. Ind. Chem., 2019, vol. 47, no. 2, pp. 5–10. https://doi.org/10.33927/hjic-2019-14

    Article  CAS  Google Scholar 

  8. Hamoudi, M., Fattal, E., Gueutina, C., Nicolas, V., and Bochota, A., Int. J. Pharm., 2011, vol. 416, no. 2, pp. 507–514. https://doi.org/10.1016/j.ijpharm.2011.01.062

    Article  CAS  PubMed  Google Scholar 

  9. Marcon, F., Mathiron, D., Pilard, S., Lemaire-Hurtel, A., Dubaele, J., and Djedaini-Pilard, F., Int. J. Pharm., 2009, vol. 379, no. 2, pp. 244–250. https://doi.org/10.1016/j.ijpharm.2009.05.029

    Article  CAS  PubMed  Google Scholar 

  10. Sian, H.K., Said, M., Hassan, O., Kamaruddin, K., Ismail, A.F., Rahman, R., et al., Process Biochem., 2005, vol. 40, nos. 3–4, pp. 1101–1111. https://doi.org/10.1016/j.procbio.2004.03.018

    Article  CAS  Google Scholar 

  11. Wang, J., Cao, Y., Sun, B., and Wang, C., Food Chem., 2011, vol. 127, no. 4, pp. 1680–1685. https://doi.org/10.1016/j.foodchem.2011.02.036

    Article  CAS  Google Scholar 

  12. Lim, C.H., Rasti, B., Sulistyo, J., and Hamid, M.A., Heliyon, 2021, vol. 7, p. e06305. https://doi.org/10.1016/j.heliyon.2021.e06305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saini, K., Pathak, V.M., Tyagi, A., and Gupta, R., Catal. Res., 2022, vol. 2, no. 3. https://doi.org/10.21926/cr.2203029

  14. Zhao, F., Li, Y., Li, C., Ban, X., Gu, Z., and Li, Z., Food Hydrocolloids, 2022, vol. 133, no. 1, p. 107951. https://doi.org/10.1016/j.foodhyd.2022.107951

    Article  CAS  Google Scholar 

  15. Zhou, J., Feng, Z., Liu, S., Wei, F., Shi, Y., Zhao, L., et al., Mol. Plant Pathol., 2021, vol. 22, no. 1, pp. 130–144. https://doi.org/10.1111/mpp.13014

    Article  CAS  PubMed  Google Scholar 

  16. Biwer, A., Antranikian, G., and Heinzle, E., Appl. Microbiol. Biotechnol., 2002, vol. 59, no. 6, pp. 609–617. https://doi.org/10.1007/s00253-002-1057-x

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, M., Endo, T., and Zimmermann, W., Aust. J. Chem., 2002, vol. 55, no. 2, pp. 39–48. https://doi.org/10.1071/CH01189

    Article  Google Scholar 

  18. Li, C., Ahn, H.J., Kim, J.H., and Kim, Y.W., Carbohydr. Res., 2014, vol. 99, pp. 39–46. https://doi.org/10.1016/j.carbpol.2013.08.056

    Article  CAS  Google Scholar 

  19. Saini, K., Pathak, V.M., Tyagi, A., and Gupta, R., Catal. Res., 2022, vol. 2, no. 3: 029, pp. 1–56. https://doi.org/10.21926/cr.2203029

  20. Melentiev, A.I., Galimzianova, N.F., Gilvanova, E.A., Shchelchkova, E.A., Kuzmina, L.Yu., Boyko, T.F., et al., Adv. Microbiol., 2014, vol. 4, no. 8, pp. 455–464. https://doi.org/10.4236/aim.2014.48050

    Article  CAS  Google Scholar 

  21. Gupta, R.S., Patel, S., Saini, N., and Chen, S., Int. J. Syst. Evol. Microbiol., 2020, vol. 70, no. 11, pp. 5753–5798. https://doi.org/10.1099/ijsem.0.004475

    Article  CAS  PubMed  Google Scholar 

  22. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., et al., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 5, pp. 1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adebule, A.P., J. Adv. Med. Life Sci., 2018, vol. 6, no. 3, pp. 1–3. https://doi.org/10.5281/zenodo.1198928

    Article  Google Scholar 

  24. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Felsenstein, J., Evolution, 1985, vol. 39, no. 4, pp. 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  26. Martins, R.F. and Hatti-Kaul, R., Enzyme Microb. Technol., 2002, vol. 30, no. 1, pp. 116–124. https://doi.org/10.1016/S0141-0229(01)00461-6

    Article  CAS  Google Scholar 

  27. Usanov, N.G., Gil’vanova, E.A., Eli’zarev, P.A., Prutsakova, E.A., and Melent’ev, A.I., Appl. Biochem. Microbiol., 2007, vol. 43, no. 1, pp. 105–110. https://doi.org/10.1134/S000368380701019X

    Article  CAS  Google Scholar 

  28. Tilden, E.B. and Hudson, G.S., J. Bacteriol., 1942, vol. 43, no. 4, pp. 527–544. https://doi.org/10.1128/jb.43.4.527-544.1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W., Electrophoresis, 1988, vol. 9, no. 6, pp. 255–262. https://doi.org/10.1002/elps.1150090603

    Article  CAS  PubMed  Google Scholar 

  30. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, 3rd ed., Oxford: Clarendon, 1986.

    Google Scholar 

  31. Nogi, Y., Takami, H., and Horikoshi, K., Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 6, pp. 2309–2315. https://doi.org/10.1099/ijs.0.63649-0

    Article  CAS  PubMed  Google Scholar 

  32. Xue, Y., Zhang, X., Zhou, C., Zhao, Y., Cowan, D.A., Heaphy, S., et al., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, no. 6, pp. 1217–1221. https://doi.org/10.1099/ijs.0.64105-0

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, W., Zhang, C.L., Romanek, C.S., and Wiegel, J., Int. J. Syst. Evol. Microbiol., 2008, vol. 58, no. 5, pp. 1106–1108. https://doi.org/10.1099/ijs.0.65363-0

    Article  CAS  PubMed  Google Scholar 

  34. de Jong, S.I., Broek, M.A., Merkel, A.Y., de la Torre, CortesP., Kalamorz, F., Cook, G.M., et al., Extremophiles, 2020, vol. 24, no. 6, pp. 923–935. https://doi.org/10.1007/s00792-020-01205-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yampayont, P., Iizuka, M., Ito, K., and Limpaseni, T., J. Incl. Phenom. Macrocycl. Chem., 2006, vol. 56, nos. 1–2, pp. 203–207. https://doi.org/10.1007/s10847-006-9084-3

    Article  CAS  Google Scholar 

  36. Alves-Prado, H.F., Carneiro, A.A.J., Pavezzi, F.C., Gomes, E., Boscolo, M., Franco, C.M.L., et al., Appl. Biochem. Biotechnol., 2008, vol. 146, nos. 1–3, pp. 3–13. https://doi.org/10.1007/s12010-007-8093-z

    Article  CAS  PubMed  Google Scholar 

  37. Savergave, L.S., Dhule, S.S., Jogdand, V.V., Nene, S.N., and Gadre, R.V., Biochem. Eng. J., 2008, vol. 39, no. 3, pp. 510–515. https://doi.org/10.1016/j.bej.2007.09.020

    Article  CAS  Google Scholar 

  38. More, S.S., Niraja, R., Evelyn, C., Byadgi, A.M., Shweta, V., and Mangaraj, S.D., Croat. J. Food Technol. Biotechnol. Nutr., 2012, vol. 7, nos. 1–2, pp. 90–97.

    Google Scholar 

  39. Reddy, S.V., More, S.S., and Annappa, G.S., J. Basic Microbiol., 2017, vol. 57, no. 11, pp. 974–981. https://doi.org/10.1002/jobm.201700270

    Article  CAS  PubMed  Google Scholar 

  40. Atanasova, N., Kitayska, T., Bojadjieva, I., Yankov, D., and Tonkova, A., Process Biochem., 2011, vol. 46, no. 1, pp. 116–122. https://doi.org/10.1016/j.procbio.2010.07.027

    Article  CAS  Google Scholar 

  41. Cao, X., Jin, Z., Chen, F., and Wang, X., J. Food Biochem., 2005, vol. 28, no. 6, pp. 463–475. https://doi.org/10.1111/j.1745-4514.2004.04603.x

    Article  Google Scholar 

  42. Kitayska, T., Petrova, P., Ivanova, V., and Tonkova, A., Appl. Biochem. Biotechnol., 2011, vol. 165, nos. 5–6, pp. 1285–1295. https://doi.org/10.1007/s12010-011-9346-4

    Article  CAS  PubMed  Google Scholar 

  43. Fujita, Y., Tsubouchi, H., Inagi, Y., Tomita, K., Ozaki, A., and Nakanishi, K., J. Ferment. Bioeng., 1990, vol. 70, no. 3, pp. 150–154. https://doi.org/10.1016/0922-338X(90)90174-U

    Article  CAS  Google Scholar 

  44. Yim, D.G., Sato, H.H., Park, Y.H., and Park, Y.K., J. Ind. Microbiol. Biotechnol., 1997, vol. 18, no. 6, pp. 402–405. https://doi.org/10.1038/sj.jim.2900400

    Article  CAS  Google Scholar 

  45. Higuti, I.H., Grande, S.W., Sacco, R., and Jose do Nascimento, A., Braz. Arch. Biol. Technol., 2003, vol. 46, no. 2, pp. 183–186. https://doi.org/10.1590/S1516-89132003000200007

    Article  CAS  Google Scholar 

  46. Li, C., Chen, S., Gu, Z., Hong, Y., Cheng, L., and Li, Z., Food Biosci., 2018, vol. 26, pp. 139–144. https://doi.org/10.1016/j.fbio.2018.10.006

    Article  CAS  Google Scholar 

  47. Chung, H-J., Yoon, S-H., Kim, M-J., Kweon, K-S., Lee, I-W., Kim, J-W., et al., J. Agric. Food Chem., 1998, vol. 46, no. 3, pp. 952–959. https://doi.org/10.1021/jf970707d

    Article  CAS  Google Scholar 

  48. Jia, X., Ye, X., Chen, J., Lin, X., Vasseur, L., and You, M., Starch–Starke, 2017, vol. 70, nos. 1–2. https://doi.org/10.1002/star.201700016

Download references

ACKNOWLEDGMENTS

During the research, the equipment of the “Agidel” Central Common Use of the Ufa Federal Research Center of the Russian Academy of Sciences was used.

Funding

The work was carried out within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation on topic No. 220131100163-4 “Interspecific interactions in microbial communities and plant-microbial associations of natural and technogenic ecosystems (genetic, biochemical and biotechnological aspects)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Aktuganov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milman, P.Y., Gilvanova, E.A. & Aktuganov, G.E. Cyclodextringlucanotransferase of the Alkalophilic Strain Caldalkalibacillus mannanilyticus IB-OR17-B1. Appl Biochem Microbiol 59, 570–579 (2023). https://doi.org/10.1134/S0003683823050125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823050125

Keywords:

Navigation